به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

فهرست مطالب ruhollah karimi kelayeh

  • افشین مدنی، محمدحسن جوارشکیان*، روح الله کریمی کلایه

    در این تحقیق سامانه اسپلیت درگ در زوایای حمله مختلف برای یک هواپیمای بال پرنده توسط یک روش عددی شبیه سازی و بهینه یابی شده است. سامانه اسپلیت درگ با ایجاد پسا نامتقارن بین بال راست و چپ، کنترل محور عمودی را فراهم می کند. هواپیمای مورد مطالعه، یک هواپیما لامبدا شکل زاویه عقب گرد 56 می باشد. سامانه کنترلی اسپلیت درگ نصب شده از دو صفحه بر روی هم تشکیل گردیده است، با باز شدن خلاف جهت در یک سمت هواپیما پسا لازم برای تولید گشتاور گردشی را ایجاد می نماید. موقعیت نصب آن ها، نوک بال ها و در قسمت لبه فرار می باشد. هنگام استفاده از اسپلیت درگ علاوه بر گشتاور گردش، گشتاور غلتشی مزاحمی ایجاد می شود که ناشی از اختلاف پسا بین سطح بالا و پایین این سامانه است و علت این امر تغییرات در زاویه حمله هواپیما می باشد. باز کردن نامتقارن صفحه ها می تواند غلتش ایجادشده را به صفر و در بعضی شرایط به حداقل برساند. آزمایش صورت گرفته در زوایای حمله 0 تا 12 درجه برای زوایای باز شوندگی اسپلیت درگ 10 و 20 و 30 درجه اجرا گردیده است. محاسبات بر پایه ی معادلات (RANS) با روش حجم محدود گسسته سازی شده است. نتایج به دست آمده نشان می دهد بسته به مقدار زاویه حمله چه میزان به زاویه سطوح اسپلیت درگ افزوده شود تا بهینه ترین حالت برای خنثی سازی غلتش پیدا گردد که در نهایت نمودار های بهینه شده این سامانه به دست می آیند.

    کلید واژگان: اسپلیت درگ رادر, پهپاد, بال پرنده, بهینه یابی, شبیه سازی عددی}
    Afshin Madani, MohammadHassan Djavareshkian *, Ruhollah KARIMI KELAYEH

    In this research, the split drag system at different AOA for a flying wing aircraft has been simulated and optimized by a numerical method. The split drag system provides vertical axis control by creating asymmetric drag between the right and left wings. The aircraft under study is a lambda shape aircraft with a swept-back angle of 56. The split drag control system is made up of two surfaces on top of each other, by opening in the opposite direction on one side of the aircraft, it creates the drag necessary to produce yawing moment. Their installation position is at the tip of the wings and on the trailing edge. When using split drag, in addition to the yawing moment, a disturbing rolling moment is created, which is caused by the drag difference between the upper and lower surface of this system, and the reason for this is the change in the AOA of the aircraft. Asymmetric opening of the surfaces can reduce the induced roll to zero and in some cases to a minimum. The test was carried out in AOA of 0 to 12ᵒ for drag split opening angles of 10, 20, and 30ᵒ. Calculations based on equations (RANS) are discretized with the finite volume method. The obtained results show how much to add to the angle of the split drag surfaces depending on the AOA in order to find the most optimal mode to neutralize the roll, and finally, the optimized diagrams of this system are obtained.

    Keywords: split drag rudder, UAV, flying wing, Optimization, Numerical Simulation}
  • محمدحسن جوارشکیان*، روح الله کریمی کلایه

    پیچش، یکی از مولفه های اساسی در طراحی هواپیماهای بال پرنده و بدون دم بوده که منجر به رفع برخی از چالش های آیرودینامیکی موجود در این دسته از هواپیماها می شود. تحقیق حاضر به منظور بررسی آیرودینامیکی اعمال پیچش هندسی در یک نمونه هواپیمای بال پرنده ی مادون صوت و ارزیابی میزان عملکرد این مولفه در هریک از فازهای پروازی انجام شده است. هندسه مورد بررسی یک مدل هواپیمای بال پرنده ی لامبدا شکل می باشد که از بالی با زاویه عقبگرد 56 درجه بهره می برد. پیچش اعمالی به این مدل از نوع پیچش منفی (Wash-out) بوده که به صورت خطی در راستای دهانه بال توزیع می گردد. مطالعه انجام شده در چارچوب شبیه سازی عددی و بر پایه حل معادلات رینولدز (RANS) گسسته شده با روش حجم محدود است. فرآیند شبیه سازی بعد از اعتبارسنجی با داده های تجربی، برای زوایای پیچش صفر و 6 درجه و محدوده زوایای حمله 5- تا 20 درجه به انجام رسیده؛ همچنین به منظور بررسی نحوه عملکرد پیچش در محدوده فاز نشست و برخاست و فاز کروز، مطالعات در دو عدد رینولدز مختلف صورت گرفته است. نتایج نشان می دهد که با اعمال پیچش، بازده آیرودینامیکیدر زوایای حمله بالا ارتقاء می یابد، اما این مشخصه، در زاویه حمله صفر درجه کاهش قابل توجهی خواهد داشت. همچنین در اثر اعمال زاویه پیچش، شروط لازم جهت پایداری طولی ارضا شده و پدیده پیچ آپ به تاخیر خواهد افتاد. با افزایش سرعت، بازده آیرودینامیکیدر طیف وسیعی از زوایای حمله بهبود می یابد؛ همچنین تغییرات بازده آیرودینامیکی ناشی از اعمال زاویه پیچش افزایش یافته و پیچش، موثرتر خواهد بود. بررسی گشتاور حول محور طولی نشان می دهد که با افزایش سرعت درجه پایداری افزایش خواهد یافت و رفتار پدیده پیچ آپ بهبود می یابد.

    کلید واژگان: پیچش هندسی, بال پرنده, شبیه سازی عددی, عدد رینولدز, ضرایب آیرودینامیکی}
    MohammadHassan Djavareshkian *, Ruhollah Karimi Kelayeh

    The twist is one of the most important parameters in the design of the flying wing and tailless aircraft that causes eliminate some aerodynamic challenge at these categories of aircrafts. The present study was performed for an aerodynamic investigation of the geometrical twist at a subsonic flying wing and evaluate this parameter at different flight phases. The study geometry is a lambda-shaped flying wing that has a wing with a 56-degree sweepback. The twist angle applied on wingtips is washout, which is linearly distributed along the wingspan. The study is conducted in the framework of numerical simulation and based on solving Reynolds-Averaged Navier-Stokes (RANS) equations by finite volume method. The simulation process was performed after validation with experimental data, for twist angles of 0 and 6 degrees and range of attack angles of 5 to 20 degrees; also, to investigate the twist performance in the range of landing and take-off phase and cruise phase, studies have been performed in two different Reynolds numbers. The results show that by applying twist, the aerodynamic efficiency is improved at high angles of attack, but this characteristic will drop significantly at the zero-degree angle of attack. Also, by applying the twist, the conditions required for longitudinal stability are satisfied, and the pitch up phenomenon will be delayed.As speed increases, aerodynamic efficiency improves over a wide range of attack angles; also, aerodynamic efficiency changes due to twist increased, and twist will be more effective. Pitch moment analysis shows that as speed increment, the degree of stability will increase, and the pitch-up behavior will improve.

    Keywords: Geometrical twist, Flying wing, numerical simulation, Reynolds Number, aerodynamic coefficients}
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال