s. m. safieddin ardebili
-
امروزه تعداد موتورهای دیزل به دلیل داشتن بازده زیاد و تولید گازهای گلخانه ای کم، در حال افزایش است. در پژوهش حاضر تاثیر افزودن نانوسلولز به سوخت دیزل بر پارامترهای عملکردی و آلایندگی موتور دیزل مورد ازریابی قرار گرفت. مقادیر نانوسلولز در 3 سطح صفر و ppm25 و ppm75 در نظرگرفته شد. آزمون های موتور در 3 دور موتور 1600، 2000 و 2400 دور بر دقیقه در حالت بار کامل انجام گرفت. به منظور اندازه گیری پارامترهای عملکردی و آلایندگی موتور، از تجهیزات مختلفی شامل دینامومتر، دستگاه اندازه گیری آلاینده ها و سیستم کنترل موتور استفاده شد. نتایج نشان داد که افزایش دور موتور در تمام ترکیب های سوختی باعث افزایش در توان موتور، مصرف سوخت ویژه، مونواکسیدکربن، هیدروکربن های نسوخته ولی مقدار گشتاور موتور، کاهش یافت. همچنین در هر دور موتور افزودن مقادیر مختلف نانوسلولز، مقدار توان و گشتاور موتور را افزایش داد، اما باعث کاهش مصرف سوخت ویژه، مونواکسیدکربن و هیدروکربن های نسوخته شد. مقدار NOX با افزایش دور موتور افزایش یافت ولی در هر دور موتور افزودن ppm25 نانوسلولز به دیزل خالص به میزان قابل توجهی مقدار NOX را افزایش داد. اما در دورهای پایین، افزایش ppm75 نانوسلولز به دیزل خالص باعث کاهش مقدار NOX نسبت به دیزل خالص شد، اگرچه از لحاظ آماری معنی دار نیست. به طور کلی نتایج این پژوهش نشان داد که افزودن نانوسلولز به سوخت دیزل می تواند سبب بهبود عملکرد و کاهش گازهای آلاینده خروجی از موتور دیزل شود. اگر چه افزودن ppm25 نانوسلولز به دیزل خالص به میزان قابل توجهی مقدار NOX را افزایش داد.
کلید واژگان: اکسیدهای نیتروژن, توان, موتور دیزل, نانوسلولزIntroductionToday, the number of diesel engines is increasing due to their high efficiency and low greenhouse gases. In the present study, the effect of adding nano cellulose as nanoparticles to diesel fuel on the performance parameters and emissions of diesel engine was investigated. Nano cellulose was provided by the Nano Novin Company in Sari. Nano cellulose values were considered at 3 levels of zero, 25 ppm and 75 ppm. Also, the tests were performed at 3 engine speed of 1600, 2000 and 2400 rpm in full load mode.
Materials and MethodsIn this study, nanocellulose was used as nanoparticles to add to diesel and to evaluate the performance and emission parameters of the engine. To prevent the deposition of nano cellulose in diesel fuel, jelly type nano cellulose was used. The samples were named after adding different amounts of nano cellulose, abbreviated D100N0, D100N25 and D100N75. D100 means 100% pure diesel and N means different amounts of nano cellulose with different amounts. Ultrasound was used to obtain homogeneous samples. About 3 liters were prepared from each sample so that it could be used for at least 3 repetitions. The required tests were performed at three different speeds of 1600, 2000 and 2400 rpm in full load mode. The necessary equipment was used to measure the performance parameters and air emissions, including diesel engine connected to the dynamometer, emissions measuring device, fuel system and control room (to apply the load and provide conditions for each treatment and data collection). The air-cooled, four-stroke, compression-ignition single-cylinder engine made by the Italian company Lombardini was used. The D400 eddy current dynamometer made in Germany was used. The ability to measure power by this dynamometer is a maximum of 21 hp, a maximum speed of 10,000 rpm and a maximum torque of 80 N.m. To measure of emissions, the MAHA MGT5 emissions meter was used. This device is able to measure the values of CO, CO2, NOX, O2 and UHC.
Results and DiscussionThe results showed that increasing engine speed in all fuel combinations increased engine power, specific fuel consumption, carbon monoxide and unburned hydrocarbons and decreased torque. Also, increasing the amount of nano cellulose per engine speed increased the amount of power and torque, but reduced the specific fuel consumption, carbon monoxide and unburned hydrocarbons. The amount of NOX increased with increasing engine speed, but at each engine speed the addition of 25 ppm nanocellulose to pure diesel significantly increased the amount of NOX. But at low speed, increasing 75 ppm nanocellulose to pure diesel reduced the amount of NOX.
ConclusionThe results of this study showed that the addition of nano cellulose as nanoparticles can improve the performance of diesel engines and also reduce the amount of emissions gases emitted from the engine. The results also showed that increasing 25ppm nanocellulose had a greater effect on engine performance. But to reduce the amount of emissions, 75 ppm nanocellulose was better.
Keywords: Diesel Engine, nanocellulose, Nitrogen oxides, power -
در این پژوهش تاثیر استفاده از سوخت های گاز طبیعی فشرده و گاز نفتی مایع بر مشخصه های عملکردی و احتراقی یک موتور دیزل تک سیلندر، چهار زمانه، آب خنک با مکش طبیعی و به صورت مختلط سوز مطالعه شد. هدف اصلی در این پژوهش تعیین شاخص های عملکردی و مشخصه های احتراقی موتور در محدوده عملکرد گاورنر و در سرعت ها و دماهای مختلف مایع خنک کننده ی موتور بوده است. آزمایش ها در شرایط پایدار برای حالت های کارکرد موتور با سوخت گازوییل خالص و مختلط سوز گازوییل-گاز و در سرعت ها و دماهای مختلف مایع خنک کننده ی موتور به صورت آزمایش های فاکتوریل در قالب طرح بلوک های کامل تصادفی در سه تکرار انجام و مشخصه های عملکردی موتور اندازه گیری شد. نتایج آزمایش موتور نشان داد که گشتاور، توان ترمزی و فشار موثر متوسط ترمزی در حالت مختلط سوز گازوییل-CNG نسبت به حالت سوخت گازوییل خالص در تمامی سرعت ها و در حالت مختلط سوز گازوییل-LPG در سرعت های پایین موتور افزایش معنی داری یافتند. مصرف سوخت و انرژی ویژه ی ترمزی نیز با افزایش دمای مایع خنک کننده در سرعت های پایین موتور و همچنین کارکرد موتور به صورت مختلط سوز کاهش معنی داری را نشان دادند. همچنین با افزایش دمای مایع خنک کننده و کارکرد موتور با حالت مختلط سوز بازده حرارتی ترمزی و بازده حجمی به ترتیب افزایش و کاهش معنی داری را نشان دادند. به طورکلی، نتیجه گیری شد که استفاده از موتور به صورت مختلط سوز گازوییل-CNG و دمای مایع خنک کننده 60 درجه سلسیوس در تمامی سرعت ها بهترین نتیجه را روی مشخصه های عملکردی و احتراقی موتور دارد.
کلید واژگان: توان ترمزی, دمای مایع خنک کننده, سوخت های گازی, عملکرد موتور, موتور مختلط سوزIntroductionToday, diesel engines provide the main power source for the world equipment e.g., common propulsion generators in industry and agriculture. These engines are widely used due to their high combustion efficiency, reliability, compatibility, and cost-effectiveness. However, diesel engines are one of the most critical consumers of fuel which in turn causes some environmental pollution. One of the convenient and low-cost ways to reduce the pollution of these engines is dual-fuel mode and the use of gaseous fuels as an alternative fuel. This study investigated the effect of blending CNG and LPG with neat diesel in dual-fuel mode. Besides, the variation in engine coolant temperature on engine performance characteristics was experimentally studied.
Materials and MethodsThe experimental apparatus consisted of a stationary, four-stroke, naturally aspirated, water-cooled, single-cylinder compression ignition engine. To control the engine load, an electrical dynamometer was made using a 7.5 kW three-phase generator and coupled to the engine as a cradle. A load cell was used to determine the force applied to the generator. The engine speed was monitored continuously by a tachometer. Fuel consumption was measured by using a weight method. A thermostat with variable temperature was used to control the temperature of the engine coolant. To measure the mass flow of air entering the cylinder, an airbox with a sharp edge orifice was used. For this study, factorial experiments in the form of a randomized complete block design with three replications were utilized to analyze the data statistically. The studied parameters were three levels of fuel ratio (100% diesel, 20% diesel and 80%± 2% CNG, 20% diesel and 80%±2% LPG), 11 engine speeds (1500 to 1600 rpm with 10 rpm intervals), and three engine coolant temperatures (50, 60, and 70 °C). All experiments were conducted in the governor control mode.
Results and DiscussionThe results showed that the torque, brake power and brake mean effective pressure (BMEP) in the diesel-CNG mode at all engine speeds and in the diesel-LPG mode at low engine speeds significantly increased compared to pure diesel. The increases in these parameters in the diesel-CNG mode were 18.67%, 19.56% and 19.85%, and in the diesel-LPG mode were 14.02%, 13.86% and 14.2%, compared to those related to the pure diesel, respectively. This increase could be due to the high calorific value of gas fuels and improvement of combustion inside the cylinder due to the formation of homogeneous charge. At low engine speeds, the reductions in the brake specific fuel consumption (BSFC) and brake specific energy consumption (BSEC) for coolant temperature 60 °C were 11.21% and 10.77%, compared to coolant temperature 50 °C, respectively. Also, the BSFC and BSEC for diesel-CNG dual-fuel mode decreased by 8.12% and 10.81%, respectively. These values for the diesel-LPG dual-fuel mode were 5.4% and 2.4%, respectively. The brake thermal efficiency (BTE) also showed a significant increase at high speeds and when using the dual-fuel operational mode. However, raising the coolant temperature due to reducing the heat losses of the engine increased the BTE. The increases in BTE for coolant temperatures 60 and 70 °C were 7.19% and 4.37%, compared to the coolant temperature of 50 °C, respectively. When using the engine in dual-fuel mode, the volumetric efficiency due to reducing the air ratio showed a significant reduction. These diesel-CNG and diesel-LPG dual-fuel mode values were 20.31% and 24%, respectively. Furthermore, raising the coolant temperature diminished the volumetric efficiency. The reduction in volumetric efficiency for the coolant temperatures of 60 °C and 70 °C were 6.84% and 19.91% compared to the coolant temperature of 50 °C, respectively.
ConclusionThe following conclusions can be deduced based on this study:The use of gaseous fuels as the main fuel and with a small amount of diesel in compression ignition engines is possible and improves the engine's performance characteristics.In the diesel-CNG mode, torque, brake power and BMEP at all engine speeds and in the diesel-LPG mode at low engine speeds significantly increased compared to pure diesel because of improved combustion inside the cylinder.At low engine speeds, increasing the coolant temperature reduced the BSFC and BSEC. Also, in the dual-fuel mode compared to the engine with baseline diesel fuel, the BSFC and BSEC were significantly lower due to the higher calorific value of gaseous fuels and higher power generation.The BTE at high engine speeds and when the engine was in dual-fuel mode showed a significant increase. Also, increasing the coolant temperature due to reducing the heat losses of the engine increased the BTE.When using the engine in the dual-fuel mode, due to the volume of air replaced by the gas, the volumetric efficiency showed a significant reduction. Also, raising the coolant temperature diminished the volumetric efficiency.Overall, it can be stated that the use of a diesel-CNG dual-fuel mode with a coolant temperature of 60 °C at entire engine speeds has the best outputs on the performance and combustion characteristics of the engine.
Keywords: Brake power, Coolant temperature, Dual-fuel diesel engine, Engine performance, Gaseous fuels -
به منظور ارزیابی خصوصیات زراعی کاملینا در شرایط تغذیه با کود نیتروژن در تاریخ های مختلف کاشت، پژوهشی به صورت طرح کرت های خردشده بر پایه بلوک های کامل تصادفی با سه تکرار در سال زراعی 98- 1397 در مزرعه تحقیقاتی دانشکده کشاورزی، دانشگاه شهید چمران اهواز اجرا شد. در این تحقیق تاریخ کاشت (15 آبان، 15 آذر و 15 دی ماه) به عنوان عامل اصلی و نیتروژن خالص (0، 23، 46 و 69 کیلوگرم در هکتار) به عنوان عامل فرعی در نظر گرفته شد. نتایج نشان داد بیشترین عملکرد دانه (8/2653 کیلوگرم در هکتار) از تاریخ کاشت اول و تیمار 46 کیلوگرم نیتروژن و بیشترین شاخص برداشت (9/30 درصد) از تاریخ کاشت دوم و تیمار 46 کیلوگرم نیتروژن به دست آمد. بیشترین عملکرد روغن (9/737 کیلوگرم در هکتار) نیز مربوط به تاریخ کاشت اول و سطح 23 کیلوگرم نیتروژن بود؛ اما بیشترین درصد پروتیین (53/28) از تاریخ کاشت دوم و سطح 69 کیلوگرم نیتروژن به دست آمد. همچنین استفاده بهینه از کود نیتروژن منجر به بهبود صفات مورد بررسی ازجمله تعداد شاخه فرعی، خورجینک در بوته، دانه در خورجینک و وزن هزار دانه شد ولی با تاخیر در تاریخ کاشت میانگین این صفات کاهش معنی داری یافت. به طورکلی نتایج این پژوهش حاکی از واکنش معنی دار کاملینا به میزان کود مصرفی و زمان کاشت بود؛ به گونه ای که میزان کود مصرفی تا سقف 46 کیلوگرم نیتروژن منجر به افزایش معنی دار اجزای عملکرد دانه و نهایتا افزایش عملکرد دانه کاملینا شد. همچنین تاخیر در تاریخ کاشت مطلوب سبب افت عملکرد کاملینا شد که حاکی از لزوم رعایت زمان مطلوب کشت است.
کلید واژگان: درصد پروتئین, درصد روغن, شاخص برداشت, گیاهان روغنی, نیتروژن برگیIntroductionCamelina [Camelina sativa (L.) Crantz] oilseed is a low-input crop that grows and yields well in semiarid regions with low-fertility or saline soils in comparison with other crops. Camelina seeds contain 30–40 percent oil. Camelina is an annual plant from the Brassicaceae family that has short and fast growth. Camelina is well adapted to cool temperate and semi-arid climates, it is more tolerant of drought and spring freezing than rapeseed (Brassica napus L.). Also, Resistance to some diseases and pests of other members of Brassicaceae plants is another important features of this plant. Research-based information is lacking to provide basic agronomic recommendations for Camelina. In general, yield and yield components of Camelina seeds depends on nitrogen fertilization, planting time and climatic conditions. Camelina responds differently to fertilizer management and planting date in different climatic and soil conditions. Selection of crop managements such as planting date and fertilization can increase the quantitative and the qualitative yield of this plant.
Materials and MethodsIn order to evaluate the effects of nitrogen fertilizer on agronomic characteristics in Camelina under different planting dates, a study was conducted in split-plot based on randomized complete blocks design with three replications at the research field of Agricultural College, the Shahid Chamran University of Ahvaz, located in the southwest of Ahvaz and the western bank of the Karun River with 31°19׳ʹ N; 48° 41׳ʹ an altitude of 22 meters above sea level during 2018-19 growth season. Experimental factors included planting date in three times (November 6, December 6 and January 5) as the main plots and nitrogen fertilizer at four levels (0, 23, 46 and 69 kg.ha-1) as the subplots. The plant material (seed) of this research was Camelina sativa cultivar Soheil which was prepared from the Biston Shafa Knowledge Foundation Company. Half of the nitrogen fertilizer was spread with phosphorus and potassium in the surface of each experimental unit and mixed with soil before planting. The other half of nitrogen fertilizer used in three sections during three stages of plant phenology included True four leaves, beginning of stem elongation and beginning of silicle emergence.
Results and DiscussionAnalysis of variance of traits showed a significant difference between nitrogen levels at each level of planting date in terms of all traits studied, including grain yield, biological yield, harvest index, plant height, percentage and oil yield, etc. Generally, based on the results of the analysis of variance, in all three planting dates. The highest grain yield (2653.8 kg.ha-1) was obtained from the first planting date and 46 kgN.ha-1 treatment and the highest harvest index in second planting date and 46 kg nitrogen treatment was measured. The highest oil yield (737.9 kg.ha-1) belonged to the first planting date and the level of 23 kgN.ha-1. However, the highest protein percentages (28.53) was obtained in the second planting date and 69 kg nitrogen treatment. Regarding to the other traits, it was observed that the optimal use of nitrogen fertilizer led to the improvement of the studied traits such as the number of sub-branches, silicle per plant, seed per silicle and 1000-grain weight, but delay in planting date caused the mean of these traits decreased significantly.
ConclusionIn general, the results of this study showed a significant response of Camelina to the amount of nitrogen used and planting date, so that in early planting (November 6) was obtained the highest grain yield, yield components, biological yield, oil yield and protein percentage. But in late planting, especially the third planting date, all the studied traits were reduced due to the collision of the plant reproductive stage with the high temperature at the end of Khuzestan growth season and the reduction of the plant growth cycle. Under three planting dates, nitrogen fertilizer application up to 46 kgN.ha-1 increased grain yield, oil yield and some yield components. Based on the results of this experiment, in order to obtain maximum grain and oil yield of Camelina, it is important to consider planting date and optimum nitrogen use.
Keywords: Harvest index, Leaf nitrogen, Oil crops, Oil percent, Protein percent
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.