به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

seyed ali sahaf

  • Reza Shahabian, Abolfazl Mohammadzadeh Moghaddam *, Seyed Ali Sahaf, Hamid Reza Pourreza
    Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction method. In most of the application areas of image processing, textural features provide more efficient information of image regions properties than other characteristics. In this research, three different algorithms were used to extract the feature vector and statistically analyzing the texture of six various types of asphalt pavement surface distresses. The first algorithm is based on the extraction of images second-order textural statistics utilizing gray level co-occurrence matrix in spatial domain. In second and third algorithms, the second-order descriptors of images local binary patterns were extracted in spatial and wavelet transform domain, respectively. The classification of the distress images based on a combination of K-nearest neighbor method and Mahalanobis distance, indicates that two stages arranging of the gray levels of the distress images edges by applying wavelet transform and local binary pattern (third algorithm) had a superior result in comparison with other algorithms in texture recognition and separation of pavement distresses. Classification performance accuracy of the distress images based on first, second and third feature extraction algorithms is 61%, 75% and 97%, respectively.
    Keywords: Pavement distress texture, Computer vision, Gray level co-occurrence matrix (GLCM), Local binary pattern (LBP), Wavelet Transform
  • رضا شهابیان مقدم، سیدعلی صحاف *، ابوالفضل محمدزاده مقدم، حمیدرضا پوررضا
    ارزیابی عملکرد روسازی یکی از مهم ترین مراحل تعیین استراتژی بهینه، در عملیات مدیریت روسازی محسوب می شود. در دو دهه اخیر تحقیقات گسترده ای پیرامون توسعه روش های خودکار، جهت ارزیابی خرابی های روسازی انجام گرفته است. اغلب این روش ها بر پایه بینایی ماشین و تکنیک های پردازش تصویر هستند. در سال های اخیر روش های آنالیز چند دقته همچون تبدیل موجک، ابزار مناسبی جهت تحلیل و شناسائی هوشمند خرابی ها با سرعت و دقتی قابل قبول فراهم آورده است. در این مطالعه، روشی بر مبنای تبدیل موجک به کارگیری شده که قادر به آنالیز صفحه ای بافت روسازی با در نظر گرفتن اجزای افقی، قائم و قطری بافت روسازی است. در این پژوهش پس از اعمال تبدیل موجک گسسته و جدا سازی باند های فرکانسی تصویر توسط چهار خانواده مختلف از موجک ها، ویژگی های بافتی زیرباندها بر مبنای ماتریس هم رخداد سطوح خاکستری استخراج شده و با نتایج حاصل از آنالیز بافت تصویر در حوزه مکان مقایسه گردید. در انتها روش کمینه فاصله ماهالانوبیس به منظور تفکیک و طبقه بندی تصاویر خرابی در 7 کلاس شامل ترک پوست سوسماری، آسفالت سالم (بدون خرابی)، ترک طولی، ترک عرضی، قیرزدگی، وصله و عریان شدگی به کارگیری گردید. نتایج اعتبارسنجی و ارزیابی عملکرد کلاس بندی حاکی از آن است که طبقه بندی تصاویر خرابی توسط آنالیز بافت تصویر در حوزه تبدیل نسبت به حوزه مکان نتایج دقیق تری در پی دارد. دقت عملکردی کلاس بندی تصاویر خرابی در حوزه تبدیل به طور میانگین برابر با 67 درصد بوده درحالی که دقت طبقه بندی داده های خرابی مبتنی بر استخراج ویژگی های بافتی در حوزه مکان برابر با 76/49 درصد است. در حوزه تبدیل، اگر چه فیلترDaubechies 2 در شناسایی خرابی قیر زدگی حساسیت عملکرد بالاتری داشته، اما به طور میانگین فیلتر Haar نسبت به سایر موجک های استفاده شده، با دقت عملکردی 24/95 درصد نتایج برتری در شناسایی و کلاسه بندی خرابی های سطح روسازی آسفالتی حاصل نموده است.
    کلید واژگان: ارزیابی روسازی, بافت تصویر, بردار ویژگی, تبدیل موجک گسسته, ماتریس هم رخداد سطوح خاکستری
    Reza Shahabian Moghaddam, Seyed Ali Sahaf *, Abolfazl Mohammadzadeh Moghaddam, Hamid Reza Pourreza
    Evaluation of pavement performance is one of the most prominent assets in choosing the beneficial strategy for pavement management operations. In the past two decades, a considerable number of investigations have been carried out on developing automatic methods for distress rocognition all of which rely on the machine vision and image processing techniques. In the past few years multi-resolutional analysis methods, namely wavelet transform has provided a great tool for fast and accurate auto-detection of distresses. In the present study, a method has been proposed utilizing the wavelet transform method which can analyze the texture surface of pavement considering the longitudinal, transverse and diagonal textural structures as the key elements. In this paper, after performing the discrete wavelet transform and decomposing the image into frequency sub-bands using 4 different wavelet families, properties of sub-bands texture has been acquired (based on grey level co-occurrence matrix) and compared to the results acquired based on image texture analysis in spatial domain. Finally, the minimal Mahalanobis distance method was applied in order to categorize the acquired images into seven classes including alligator cracking, without distress, longitudinal cracking, transverse cracking, bleeding, patching and raveling. Based on the results of validation and evaluation of the classifiction performance it was observed that the distress image classification using image texture analysis in the transformation domain leads to the more accurate results in comparison to spatial domain. The mean accuracy of distress image classification in transformation domain is 67% while the accuracy rate in classification of distress data based on extraction of texture features in spatial domain is 49/76%. In case of transformation domain, although Daubechies 2 filter has a better sensitivity rate in discrimination of bleeding distress, in general, the Haar filter outperformed other utilized wavelets in recognition and classification of asphalt pavement surface distresses with 95% accuracy.
    Keywords: pavement evaluation, discrete wavelet transform, feature vector, image texture, grey level co-occurrence matrix
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال