به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

seyed mostafa mirhassani

  • Zeinab Ghasemi Darehnaei, Seyed MohammadJalal Rastegar Fatemi *, Seyed Mostafa Mirhassani, Majid Fouladian

    Environmental monitoring via vehicle detecting using unmanned aerial vehicle (UAV) images is a challenging task, due to small-size, low-resolution, and large-scale variation of the objects. In this paper, a two-level ensemble deep learning (named 2EDL) based on Faster R-CNN (regional-based convolutional neural network) is introduced for multiple vehicle detection in UAV images. We use three CNN models (VGG16, ResNet50, and GoogLeNet) that have already pre-trained on huge auxiliary data as feature extraction tools, combined with five learning models (KNN, SVM, MLP, C4.5 Decision Tree, and Naïve Bayes), resulting 15 different base learners in two levels. The final class is obtained via a majority vote rule ensemble of these 15 models into five vehicle classes (car, van, truck, bus, trailer) or “no-vehicle”. Simulation results on the AU-AIR dataset of UAV images show the superiority of the proposed 2EDL technique against existing methods, in terms of the total accuracy, and FPR-FNR trade-off.

    Keywords: deep transfer learning, Ensemble Learning, multiple object detection, unmanned aerial vehicles
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال