sohrab effati
-
International Journal Of Nonlinear Analysis And Applications, Volume:15 Issue: 10, Oct 2024, PP 235 -241In this paper, Artificial Neural Networks are used to solve Delay Differential Equations. We have suggested an appropriate approximation function based on ANN and then by solving an optimization problem of error function, the neural network is trained. The advantage of this technique is that the proposed approximation functions, with a slight modification, can be used for most types of delay differential equations, including DDE with constant delay, time-dependent delay and pantograph delay. To demonstrate the effectiveness of the method, various examples have been tested and the validity and efficiency of the method have been shown.Keywords: Delay Differential Equations, Artificial Neural Networks, Unconstrained Optimization Problem
-
IntroductionThe development of type 2 diabetes mellitus (T2DM) is associated with lifestyle factors, including dietary patterns. A diet rich in macro- and micronutrients has been reported to reduce the risk of T2DM. Therefore, this study aimed to identify the dietary factors most closely associated with T2DM in subjects within the MASHAD cohort using a decision tree algorithm.MethodsThis cross-sectional study was conducted on 9704 individuals from the Mashhad Stroke and Heart Atherosclerotic Disorders (MASHAD), of whom 5936 participants completed a 24h dietary recall questionnaire. Macronutrients and micronutrients were estimated using Diet Plan 6 software. A decision tree algorithm was utilized to evaluate the most crucial dietary nutrient intakes concerning T2DM.ResultsThe algorithm showed a high specificity (81.34%) but low sensitivity (34.21%), which could predict T2DM with a low-to-moderate diagnostic ability (AUC=0.58). Based on the decision tree, eight features, including dietary potassium, total sugar, sucrose, riboflavin, thiamin, sodium, total nitrogen, and magnesium, were T2DM’s most critical dietary components.ConclusionBased on the results, consuming sugar, salt, and vitamin B was the most critical related dietary intake to T2DM. Dietary interventions may be a cost-effective strategy for preventing T2DM.Keywords: Diabetes Mellitus, Nutrients, Diet, Cohort Studies
-
در این مقاله شرایط لازم بهینگی برای مساله کنترل بهینه با تاخیر های متغیر- زمانی بررسی می شوند. اهمیت این مساله در آن است که هر دو متغیر کنترل و حالت، تحت تاثیر تاخیر های وابسته به زمان می باشند. هم چنین تاخیر ها در تابعک هدف نیز اعمال شده اند. وابستگی تاخیرها به زمان، باعث سخت شدن اثبات شرایط لازم بهینگی می شود. پیچیدگی اثبات این شرایط، در محاسبه تغییرات متغیر های کنترل و حالت تحت تاثیر این تاخیر ها می باشد. برای محاسبه و بررسی این تغییرات در متغیر های تاخیری کنترل و حالت، از تغییر متغیر مناسبی استفاده می کنیم. بدین ترتیب با اعمال این تغییر متغیر و محاسبه تغییرات متغیرهای کنترل و حالت، شرایط لازم بهینگی برای مساله اثبات می شود. در نهایت، با استفاده از این شرایط به حل چند مثال پرداخته و نتایج عددی به دست آمده ارایه می شوند.
کلید واژگان: مسائل کنترل بهینه, سیستم های تاخیری, شرایط لازم بهینگی, سیستم های غیرخطی, تاخیر های متغیر- زمانیIn this paper, necessary optimality conditions for a class of optimal control problems containing time-varying delays in control and state variables are discussed. There is an important aspect of these problems in that time-varying delays are applied to both state and control variables. Also, the cost functional of problems is influenced by the time-varying delays in state and control. We prove necessary optimality conditions in this study. A key aspect of the proof is calculating the variations of control and state variables when there are time-dependent delays. we make use of appropriate changing variables to derive these variations. In order to illustrate the use of these conditions, several examples are solved and numerical results are presented. At the end, some conclusions are drawn.
Keywords: Optimal control problems, Time delay systems, Necessary optimality conditions, Nonlinear systems, Time-varying delay -
Finished products and manufacturing plants are some elements of the production system in the supply chain, and there are other manufacturing plants. They produce work in process and finished products and hold them in warehouses. So, they need to plan and control production and inventories. Isolated planning and control by different manufacturers increase inventories in them, and then they must plan and control integratory. This paper presents an iterative approach for solving the optimal control problem with bounded control variables. The projection function constructs the iterative method to approximate the control law. Employing the approximation of control law, the approximation of state and the co-state variables are obtained. For this purpose, we apply the Hamiltonian of the optimal control problem. From the Hamiltonian, the approximation of control law and then the approximation of state law is obtained. A simple example is given to compare the results with another published paper. Also, a case study on production planning in a three-stock reverse logistics system with deteriorating items is derived to show the method's performance.
Keywords: Optimal control problem, Projection method, Production planning system, Reverse logistics system -
This paper is concerned with the stochastic linear quadratic regulator (LQR) optimal control problem in which dynamical systems have control-dependent diffusion coefficients. In fact, providing the solution to this problem leads to solving a matrix Riccati differential equation as well as a vector differential equation with boundary conditions. The present work mainly proposes not only a novel method but also an efficient fixed-point scheme based on the spline interpolation for the numerical solution to the stochastic LQR problem. Via implementing the proposed method to the corresponding differential equation of the stochastic LQR optimal control problem, not only is the numerical solution gained, but also a suboptimal control law is obtained. Furthermore, the method application is illustrated by means of an optimal control example with the financial market problems, including two investment options.Keywords: stochastic, quadratic, optimal, Control, Riccati equation, approximation, financial market
-
In this paper, as an extension of Pareto optimality concepts for multi objective programming problems to fuzzy multi objective linear programming (FMOLP) problems, different types of Pareto optimal solutions (POSs), namely, weakly, strictly, and properly POSs are defined on the basis of α-cuts of fuzzy numbers. Then a method for solving FMOLP problems is proposed to obtain them. It is shown that they can be obtained by solving some non fuzzy multi objective linear programming problems. A numerical example is solved to illustrate the method.
Keywords: Multi objective linear programming, Fuzzy number, Properly α-Pareto optimal solution, Weakly α-Pareto optimal solution, Strictly α-Pareto optimal solution -
The Hamilton-Jacobi-Bellman (HJB) equation, as a notable approach obtained from dynamic programming, is widely used in solving optimal control problems that results in a feedback control law. In this study, the HJB equation is first transformed into the Convection-Diffusion (CD) equation by adding a viscosity coefficient. Then, a novel numerical method is presented to solve the corresponding CD equation and to obtain a viscosity solution of the HJB. The proposed approach encompasses two well-known methods of Finite Volume Method (FVM) and Algebraic Multigrid (AMG). The former as a reliable method for solving parabolic PDEs and the latter as a powerful tool for acceleration. Finally, numerical examples illustrate the practical performance of the proposed approach.Keywords: Optimal control problems, Hamilton-Jacobi-Bellman (HJB) equation, convection-diffusion equation, finite volume method, algebraic multigrid method
-
Iranian Journal of Numerical Analysis and Optimization, Volume:10 Issue: 2, Summer and Autumn 2020, PP 223 -239
We apply a new method to solve fractional partial differential equations (FPDEs) with proportional delays. The method is based on expanding the unknown solution of FPDEs with proportional delays by the basis of Bernstein polynomials with unknown control points and uses operational matrices with the least-squares method to convert the FPDEs with proportional de lays to an algebraic system in terms of Bernstein coefficients (control points) approximating the solution of FPDEs. We use the Caputo derivatives of de gree 0 < α ≤ 1 as the fractional derivatives in our work. The main advantage of using this technique is that the method can easily be employed to a variety of FPDEs with or without proportional delays, and also the method offers a very simple and flexible framework for direct approximating of the solution of FPDEs with proportional delays. The convergence analysis of the present method is discussed. We show the effectiveness and superiority of the method by comparing the results obtained by our method with the results of some available methods in two numerical examples.
Keywords: Fractional partial differential equation, Bernstein polynomial, Operational matrix, Caputo derivative -
This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is presented. Through the finite number of algorithm iterations, a suboptimal control law is obtained for the optimal control problem. An illustrative example is given to demonstrate the efficiency of the proposed method.Keywords: Optimal control problem, Successive approximation method, Pontryagin's maximum principle, Suboptimal control
-
The optimal allocation of natural gas resources to various uses such as final and intermediate consumption, injection into oil fields, and exports can help policymakers to use this kind of resources efficiently. Empirical evidence support using hyperbolic discount rates instead of fixed discount rates in the economic literature. The purpose of this study is to maximize the social welfare function and analyze the optimal paths of different uses of natural gas over the next three decades based on a nonlinear dynamic programming model using a hyperbolic discount rate. The results show that in the current situation, gas exports do not maximize social welfare, but by expanding Iran's natural gas production, exports will lead to maximizing social welfare.
Keywords: Natural Gas, Optimal Allocation, Hyperbolic Discounting, Iran. JEL Classifications: Q34, Q48, C61 -
In order to more effectively cope with the real world problems of vagueness, imprecise and subjectivity, fuzzy event systems were proposed recently. In this paper, we investigate the controllability and the observability property of two systems that one of them has fuzzy variables and the other one has fuzzy coefficients and fuzzy variables (fully fuzzy system). Also, sufficient conditions for the controllability and the observability of such systems are established. Some examples are given to substantiate the results obtained.Keywords: Fuzzy dynamical systems, Controllability, Observability, Fuzzy number, Fuzzy state
-
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadratic optimization problem. The proposed method is illustrated by several simulated data and real data sets for both models (linearand nonlinear) with probabilistic constraints.Keywords: Probabilistic constraints, Support Vector Machine, Support Vector Regression, Quadratic programming, Probability function, Monte Carlo simulation
-
استفاده از سینک متحرک یکی از مهمترین تکنیک ها در جهت مصرف بهینه انرژی و به دنبال آن افزایش عمر شبکه های حسگر بی سیم می باشد. کارهای زیادی در خصوص قرارگیری سینک متحرک در شبکه و همچنین تعیین مسیری برای حرکت آن ارائه شده است. از آنجایی که ساختارهای سلسله مراتبی نیز به عنوان یکی از پرکاربردترین توپولوژی های شبکه های حسگر بی سیم محسوب می گردد، ما در این مقاله حرکت سینک را در شبکه های سلسله مراتبی دو سطحی مورد بررسی قرار داده ایم. روش پیشنهادی که مبتنی بر مدل برنامه نویسی ریاضی Mixed Integer Linear Programming) MILP) می-باشد، انعطاف پذیری موثری در خصوص نوع کاربرد شبکه حسگر دارد؛ به طوری که با توجه به نوع کاربرد شبکه و به تبع آن سطح بحرانی بودن زمان گزارش داده های شبکه(tar) مسیری بهینه برای حرکت سینک در شبکه تعیین می کند و در زمان تعیین شده (tar) داده های هر خوشه با مصرف بهینه انرژی توسط سینک جمع آوری میشوند. روش ارائه شده برای تعیین مسیر حرکت سینک، تعدادی نقطه بهینه را در شبکه مشخص میکند و برای هر نقطه، زمان توقف و سرخوشه های ارسال کننده را نیز تعیین میکند. در قسمت شبیه سازی، ابتدا به تحلیل کامل روش ارائه شده پرداختهایم، سپس روش ارائه شده را با روش های دیگر کنترل حرکت سینک متحرک و همچنین روش حرکت سینک در مسیرهای مقید مقایسه نمودهایم. نتایج شبیه سازی نشان دادهاند که ایده سینک متحرک در شبکه های سلسله مراتبی دو سطحی مبتنی بر روش ارائه شده، می تواند عمر شبکه حسگر را نسبت به مسیر های مبتنی بر قید بین دو تا چهار برابر و نسبت به روش سینک ثابت بین هشت تا ده برابر افزایش دهد.
کلید واژگان: شبکه های حسگر بی سیم, حرکت سینک مبتنی بر کاربرد, شبکه های سلسله مراتبی, مدل MILPRemarkable lifetime improvement has been revealed by controlling sink movement in Wireless Sensor Network (WSN). This paper proposes a framework to be utilized in deadline-based and constant bit rate applications for maximizing lifetime of WSN where a sink can move in the network, freely. By dividing all sensor nodes into clusters, a Mini Data Collector (MDC) node which is responsible for data collection is selected in each cluster; then, the mobile sink must harvest sensory data from each MDC at some Harvesting-Points (HPs) in a specific deadline. Optimal transmission range and sending time of MDCs is strictly related to the prescribed deadline which is purely perceived as criticalness level of applications. Proposing a Mixed Integer Linear Programming (MILP) analytical model for maximizing lifetime of WSN in deadline-based applications through designing sink trajectory and determining mobile sink sojourn time at harvesting-points is the novelty of this paper. Comprehensive investigation on proposed algorithm parameters has been accomplished in simulation section and the proposed algorithm superiority to the stationary sink scheme and predefined trajectory algorithms has been revealed.Keywords: Wireless Sensor Network, mobile sink, deadline, based application, MILP model
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.