sunanda paul
-
Due to the great number of medicinal application of morphine in drugs, the morphonium chloride (IL01) and morphonium nitrous (IL02) were investigated using the computational method to assess their biological activity. The quantitative structure activity relationship (QSAR) parameters for instance, charge density, surface area grid, volume, LogP, polarizability, refractivity, and molecular mass were demonstrated through the density functional theory (DFT) for simulation as well as the chemical reactivity like HOMO, LUMO, and HOMO, LUMO gap were also calculated. In addition, the most important thermodynamic properties such as entropy and heat of capacity were calculated using DFT method. The values of the initial entropy and heat of capacity were zero without applying temperature. At 273 K, the entropy and heat of the capacity are 0.117, 0.113, and 0.062, 0.055 kcal/mol-deg for IL01 and IL02, respectively, which finally increased by 0.177, 0.162 and 0.120, 0.099 kcal/mol-deg at 523 K. When electric field was applied on IL01, and IL02, the entropy was decreased by 32.47% and 2.65% whereas the heat of capacity was decreased by 79.03% and 1.81%, respectively. Finally, in same electric field with increasing temperature, the entropy was enhanced by 16.45% and 45.45% besides the heat of capacity was increased about 100% at 523 K and IL02 was found to be less response compared with that of the IL01 at low temperature for electric filed but almost similar response at high temperature.Keywords: Morphine, DFT, electric field, QSAR
-
The physical properties, chemical and biological properties are evaluated through the Density Functional Theory (DFT) of molecular mechanics. The difference between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) is starting from -5.91 to 6.15, which means that chemical reactions change the same for all anions. The biological activity of predictions given by QSAR calculation is forecasted where the PIC50 of all ionic liquids is near or less than -4.00, as a result, these are considered as the highly bioactive ionic liquids. To identify these molecules, computational data is used to determine the vibrational and electronic spectrum.Keywords: QSAR, HOMO, LUMO, Vibrational spectroscopy, UV visible spectrum
-
International Journal of Advanced Biological and Biomedical Research, Volume:8 Issue: 2, Spring 2020, PP 112 -127The morpholinium cation based ionic liquids are designed to evaluate the thermophysical, chemical reactivity, and biological activity. To estimate and design the bioactive ILs, propionate and trihalopropanoate were considered under theoretical study by Density Functional Theory (DFT). To make effect of halogens atom on anion, propionate, trifluro propionate, trichloro propionate, and tribromo propionate were taken for optimization. Some thermodynamic and thermophysical properties such as free energy, entropy, dipole moment, binding energy, nuclear energy, electronics energy, and heat of formation were calculated using DFT method and make a comparative effect for halogen atoms activity on anion. The free energy, binding energy, and heat of formation were the highest on morphonium trifluro propionate (IL02) and the second is on tribromo propionate (IL04). Quantitative Structure Activity Relationship (QSAR) like charge density, surface area grid, volume, LogP, polarizability, refractivity, and molecular mass were simulated and recorded, from which the biological activity was calculated. The chemical reactivity like HOMO, LUMO, HOMO-LUMO gap, ionization potential, hardness, softness electronegativity and electron affinity were calculated. The vibrational spectroscopy and UV spectroscopy data provide them the identification and characterization. To sum up, the thermophysical properties are highly affected by trifluro propionate anion then tribromo propionate, trichloro propionate, and propionate respectively. On the other hand, the chemical reactivity increases in order IL04, IL03, IL02, IL01 but biological activity is inversely changed.Keywords: Morpholine, DFT, HOMO- LUMO, QSAR, and Vibrational spectroscopy
-
Incomputational chemistry through various basis sets, it is possible to design new molecules and discuss their use through their physical, chemical, biochemical studies. Chemical activity, biological activity, physical chemical activities can be diagnosed using density functional theory (DFT) for some palladium (II) complex ions. In this research study, the optimized dihydrazine palladium (II) complex ion (L01), di(1, 2- diaminemethane) palladium (II) complex ion (L02), di(1, 2- diamineethane) palladium (II) complex ion (L03), and di (1, 2- diamine propane) palladium (II) complex ion (L04) were simulated. Finally a comparative study of the palladium (II) complex ions were designed to show what ions are biologically more active using their QSAR data and orbital diagrams for HOMO and LUMO of the study of electronic properties. The HOMO-LUMO gap was also evaluated for chemical reactivity. The PIC50 value was calculated using the QSAR data where the value of L01, L02, and L03 L04 where -15.757, 13.128, -6.111 and -5.955, respectively. If PIC50 is below -6, then the compound is said to be biologically active. It was found that, the L04 is highly biological active and L03 is almost similar to L04. Also, by enhancing the methyl group in palladium chain, the biological activity increased.Keywords: Palladium (II), DFT, QSAR, HOMO, LUMO, Vibrational spectroscopy, Electronic spectroscopy
-
In the light of computational chemistry, based on morpholinium cation-based Ionic Liquid, their different types of physical, chemical, and biological properties is highlighted. The physical properties are evaluated through the Density Functional Theory (DFT) of Molecular Mechanics and also examine the chemical and biological properties. The difference between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) is starting from 11.19 to 4.00, which means that their chemical reactions change as soon as an anion change is done. Biological activity of predictions given by QSAR calculation is forecasted. Where the value of all the LogP that is available is positive, which indicates hydrophobic, on the other hand, PIC50 calculations are found that all the values below 5 are biologically active. To identify these molecules, computational data is used to determine the vibrational spectrum and electronic spectrum.Keywords: HOMO, LUMO, Vibrational spectroscopy, QSAR, and UV visible spectrum
-
International Journal of Advanced Biological and Biomedical Research, Volume:7 Issue: 4, Autumn 2019, PP 306 -325As cancer is the top killer diseases in the world, the scientists and researchers have been searching the new drugs and remedy methods. Most of the anticancer drugs are organic compounds which were approved by the FDA while metallodrugs are very rare. In the present time, some palladium and rhodium complexes are going to use as anticancer molecules. The palladium (II) complex has higher anticancer activity against different cancer cell that is why the different amine ligands are considered under theoretical study by the method of density functional theory (DFT) to make a new molecule. Some thermo-physical parameter was conducted such as free energy, entropy, dipole moment, binding energy, nuclear energy, electronics energy, the heat of formation. On the other hand, the chemical reactivity properties like occupied Molecular Orbital Highest (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), HOMO-LUMO gap, ionization potential, electronegativity, hardness, softness and electron affinity, and biological properties like charge density, surface area grid, volume, LogP, polarizability, refractivity, molecular mass were calculated using the DFT method. To make comparative biological properties, different anions such as chloride, nitrate, hydroxide, carbonate and sulfate ions were used as homogeneous and heterogeneous adding.Keywords: Palladium (II), QSAR, HOMO, LUMO, Vibrational spectroscopy, Electronic spectroscopy
-
Cannabicyclol, also called CBL, is one of the least known and studied isomer of cannabinoids in the cannabis plant, and it is the precursor of the different cannabinoids found in marijuana plant having with widespread medicinal use. In this work, the thermophysical properties of CBL such as, free energy, entropy, dipole moment, binding energy, nuclear energy, electronics energy, and heat of formation were estimated using density functional theory for developing use as pharmaceutical pursues. In addition, the chemical reactivity properties including highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO gap, ionization potential, electronegativity, hardness, softness, and electron affinity were evaluated. It was found that, the magnitude of HOMO was -8.98 and -8.53, LUMO was 0.19, -0.31 and HOMO –LUMO gap was -9.17 and -8.22 eV of CBL and CBG, respectively. The vibrational spectrum and electronics spectrum were simulated for identification and characterization. These studies provided a proper and predictable data for further use in any chemical and pharmaceutical purpose.Keywords: Cannabis, HOMO, LUMO, DFT, vibrational spectrum, electronics spectrum
-
As the morpholine and morphine have been used all over the world as pain killer drugs even used in cancer treatment, so the morpholine is more demanding chemical molecule. In our work, the morpholine has included the addition of inorganic anions like nitrate and nitrite for forming morpholinium based Ionic Liquid. Their chemical properties, biochemical properties, and physio-chemical properties are evaluated using computational chemistry through the Density Functional Theory (DFT). The biological properties have been shown that biological activity in the designed ionic liquid for uses in new drug discovery. From QSAR study, the value of the LogP is 0.713 and 1.7 which indicates hydrophobic nature and PIC50 is -2.14 and -3.96 respectively. The nitrate and nitrite comparison have been highlighted through this work. From QSAR and PIC50, it is seen that due to the nitrate addition with morpholine is more biological activity than nitrite. On the other hand, the toxicity of nitrate is less than nitrite.
Keywords: Morpholine, Ionic Liquids, QSAR, HOMO, LUMO, and vibrational spectroscopy -
Some thermophysical parameters of CBD and THC such as free energy, entropy, dipole moment, binding energy, nuclear energy, electronics energy, heat of formation, and chemical reactivity like HOMO (Occupied Molecular Orbital Highest) and LUMO (Lowest Unoccupied Molecular Orbital, HUMO-LUMO gap, ionization potential and electron affinity were calculated via semi-empirical and molecular mechanic method. For the characterization, the IR vibration spectroscopy, NMR in case of coupling and shielding constant were calculated. The Quantitative Structure Activity Relation (QSAR) properties of molecules like charge density, surface area grid, volume, LogP, polarizability, refractivity, molecular mass were determined using the HyperChem 8.0.10 program. Using the thermophysical and QSAR data, the IC50 and pHIC50 (–logIC50) was developed which is referred as biological activity parameter.Keywords: HyperChem 8.0.10, Cannabinoid, tetrahhdrocannabinol, QSAR, thermodynamic parameters, HOMO-LOMO, and NMR
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.