yu-dong zhang
-
Digital twin-enabled neural networks will develop innovative processes in feature selection and simulation. In addition, this methodology will have development in autonomous driving, natural language processing, healthcare, and many other fields. Recently sensors have been widely used for environment monitoring, and massive data has to be processed efficiently and effectively, which requires managed neural architectures for sustainable computing. The sustainable digital twin-empowered architectures create new biological evolution simulation algorithms and intelligent system architectures for supervised and unsupervised learning. Some of today's fundamental artificial intelligence issues, including adaptive machine learning and neuromorphic cognitive models, can be overcome by this methodology. The goals of this special issue on digital twin-enabled neural network architecture management for sustainable computing aim to pay attention to the researchers and industries towards recent advances in decision-making algorithms, neural network models and architectures for faster processing.
Keywords: Intelligent system architectures, Machine learning, Neural network modelling, simulation, Sustainable soft computing, Internet of Things (IoT)
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.