جستجوی مقالات مرتبط با کلیدواژه "allameh tabatabai's argument of reality" در نشریات گروه "فلسفه و کلام"
تکرار جستجوی کلیدواژه «allameh tabatabai's argument of reality» در نشریات گروه «علوم انسانی»جستجوی allameh tabatabai's argument of reality در مقالات مجلات علمی
-
برای اثبات وجود مبدایی برای عالم، استدلال های گوناگونی صورت گرفته است. برهان صدیقین گونه ای استدلال است که در آن، با تامل در حقیقت وجود، مبدا وجود استنتاج می شود. استدلال علامه طباطبایی به سبک برهان صدیقین است که «برهان واقعیت» نام گرفته است و تقریر ساده تری به نظر می رسد. مفهوم سادگی از آغاز درخشش بر لبه تیغ اکام، در دستگاه های فکری، معیار داوری میان تبیین های علمی و فلسفی در نظر گرفته و روایت های گوناگونی از آن ارایه شده است. در این میان، روایت ریچارد سویینبرن دقیق تر و پرمایه تر به نظر می رسد؛ زیرا او سادگی را هم به معنای نحوی و هم به معنای هستی شناختی آن در نظر گرفته و جنبه های گوناگونی برای آن بر شمرده است. سویینبرن سادگی را معیار محتمل بودن یک نظریه و دلیل صدق آن می داند. مقاله حاضر، نخست روایت سویینبرن از اصل سادگی را بازگو می کند و سپس در پرتو این اصل می کوشد نشان دهد تبیین علامه طباطبایی ساده ترین و بهترین تبیین درباره مبدا هستی است.کلید واژگان: اصل سادگی, سویینبرن, علامه طباطبایی, برهان واقعیت, تبیینPhilosophers, especially at the beginning of the era of philosophy, have made various arguments to explain the origin of existence. Allameh Tabatabai's argument of reality is among them. In this study, Swinburne's account of the simplicity principle is analyzed. Then, the principles and concepts postulated in the argument of reality are analyzed and examined based on the facets. What seems impressive in the argument of reality is brevity. In this research, an attempt has been made to answer two research questions: 1) Is it rational to consider the simplicity criterion in assessing the truth of a theory and its probability? Also, is the argument of reality in the viewpoint of Swinburne's simplicity principle, simpler than other arguments? Swinburne positively agrees with this view. He considers simplicity to be a fundamental a priori truth, and the criterion of the probability of an explanation.‘Simplicity’ is one of the fundamental concepts of epistemology. ‘Syntactic simplicity’ measures the number and brevity of the basic principles of a theory and its formulation, and ‘ontological simplicity’ measures the number of kinds of concepts postulated in a theory. William Ockham did not explicitly mention the principle of simplicity, but he is known for the famous term "Ockham's Razor". He does not consider the assumption of plurality without the necessity to be rational. Popper argued that a simple theory is easier to be falsified. According to Eliot Sober, simplicity is meaningful only if it is placed in a particular context. So, he proposes the principle of ‘parsimony’. According to David Lewis, the predicates and concepts that formulated a simple theory should refer to perfectly natural properties. Quine considers the tendency to prefer simple theories to be caused by ‘translogical features of human thought’ that tend the world to be simple. Swinburne argues it is an a priori ultimate epistemological principle that simplicity is evidence of truth. He considers simplicity to be the criterion of the probability of a theory and the evidence of the truth of that theory and suggests six facets in his account. Philosophically, the factors are 1) the number of concepts and principles postulated, 2) the number of kinds of concepts, 3) understanding the concepts postulated in a theory not to be entailed in understanding other concepts and principles, 4) a theory consisting of a few principles is simpler than one consisting of many principles, 5) a formulation of a theory in which principles relate to a few concepts is simpler rather than many concepts, and 6) a mathematical formulation is simpler.The principles and concepts postulated in the argument of reality are general and obvious in that their definition is literal, and they consist of the concept of eternal necessity and the concept of reality. The concept of reality takes precedence over the concept of the authenticity of existence and nature. In Allameh’s argument, from the beginning, the external reality is considered, regardless of whether that reality is an example of existence based on the authenticity of existence, or based on the authenticity of nature, it is an example of a contingent nature or a necessity nature, which does not make a difference in the completeness of the argument. Because it is enough to be clear that absolute reality exists unconditionally. This argument relies on the inviolable truth of the proposition that absolute reality necessarily exists. This brevity in the principles and concepts of the argument of reality makes it very compatible with the principle of simplicity and the facets that Swinburne enumerated in his account. According to Swinburne’s account, simplicity is a fundamental a priori truth. The Proposition "absolute reality necessarily exists" is a priori true and never accepts negation, and it always corresponds to a reality, either negatively or positively.The results of the present study show that, according to Swinburne's account, simplicity is the criterion of the probability of an explanation. In other words, if an explanation is a priori true, so the fundamental evidence for its truth is the simplicity of that explanation. Therefore, according to the correspondence theory of truth, it seems to be rational that the argument of reality is simpler and more probable than other arguments. In addition, it seems there is a correspondence in the argument of reality for each of the facets Swinburne enumerated for simplicity making it simpler than other arguments.Keywords: Principle of Simplicity, Swinburne, Allameh Tabatabai's Argument of Reality, Explanation
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.