جستجوی مقالات مرتبط با کلیدواژه "service industry" در نشریات گروه "کتابداری و مدیریت اطلاعات"
تکرار جستجوی کلیدواژه «service industry» در نشریات گروه «علوم انسانی»-
هدف
هدف پژوهش حاضر تحلیل خوشه ای توسعه دانش در حوزه استخراج دانش در صنایع خدماتی است.
روش شناسی:
در این پژوهش کاربردی از رویکرد کتاب سنجی و تکنیک نگاشت علمی استفاده شده است. داده های پژوهش از پایگاه اسکوپوس طی سال های 1986 تا 2022 گردآوری شده است. برای تحلیل و مصورسازی داده ها و ترسیم نقشه های علمی از نرم افزار VOSviewer و Bibliometrix بسته R استفاده شده است.
یافته هابررسی داده ها حاکی از آن است که 434 مدرک در حوزه استخراج دانش در 5 خوشه استخراج دانش، هوش مصنوعی، بازیابی اطلاعات، معناشناسی، و پیش بینی قرار دارند. استخراج دانش و داده کاوی از پرکاربردترین واژه ها هستند که در یک خوشه واحد قرار دارند و بیشترین مرکزیت و بینیت را دارند. حوزه بهداشت و درمان از جمله حوزه هایی که در استخراج دانش بیشترین فعالیت را دارند.
نتیجه گیریاستخراج دانش میان رشته ای نوظهور در مدیریت دانش است و بر اقتصاد کشور تاثیر مستقیم و قابل توجهی دارد. توسعه دانش و تلفیق موضوعات اصلی در حوزه استخراج دانش حایز اهمیت است. برای ارتقا و پیشرفت این فرایند در صنایع خدماتی پیشنهاد می شود تا با نگاهی راهبردی در استفاده از تحلیل کلان داده بستر فعالیت و موفقیت صنایع خدماتی در استخراج دانش فراهم شود. خوشه های شناسایی شده در این پژوهش در سه خوشه دانش عملی، راهبردی و مشارکتی نیز تقسیم شده اند.
کلید واژگان: استخراج دانش, مدیریت دانش, کتاب سنجی, نگاشت علوم, خوشه دانش, نگاشت موضوعی, صنایع خدماتیPurposeService industries are recognized as one of the largest sectors of the economy globally, and it has the most prominent role in the countries' economic growth. To create an essential change that represents a revolutionary change in the technology of a product or service, there is a need to acquire, extract and develop knowledge to achieve a competitive advantage. Therefore, this study aims to analyze the knowledge development clusters in the service industry's knowledge extraction field. In the knowledge management process, knowledge extraction is the main phase of knowledge acquisition. Knowledge acquisition is one of the important aspects of knowledge discovery in databases to help managers make timely decisions by extracting correct knowledge.
MethodologyBibliometrics and scientific mapping techniques have been used in this applied research. Research data were collected from the Scopus database from 1986 to 2022. VOSviewer and Bibliometrix R were used to analyze and visualize data and scientific maps. Furthermore, to ensure the accuracy and validity of the results, Bibliometrix and Excel tools have been used to integrate data and remove duplicate data.
FindingsThe research findings show the knowledge extraction application among 434 documents in 5 clusters of knowledge extraction, artificial intelligence, information retrieval, semantics, and forecasting. In the research, knowledge extraction and data mining are the most widely used words in a single cluster and have the most centrality and betweenness. Likewise, the bibliometric analysis of the data in The Multiple Correspondence Analysis (MCA) shows that the Internet, natural language processing, and machine learning are among the topics that are important next to the healthcare sector. This shows the importance of natural language and machine learning in extracting knowledge in healthcare services. Since 2006, the importance of knowledge extraction has received more attention. The co-occurrence of keywords shows that knowledge extraction is widely used with data mining, extraction, and artificial intelligence. The keywords of knowledge extraction and data mining in cluster 1, semantics, knowledge management, and information services in cluster 2, and information retrieval, internet, and human in cluster 3 have the highest centrality. The theme mapping shows that forecasting, multi-agent systems, and planning are themes with high density and low centrality, which are called niche themes. Semantics, web services, and knowledge-based systems are the main themes with low density and high centrality. Also, artificial intelligence, information management, and decision support systems are themes with low density and centrality, which are also known as emerging or declining themes. The forecasting cluster is located in the strategic knowledge cluster group. Information retrieval, knowledge extraction, and artificial intelligence are included in the cluster of practical knowledge. Semantics as a cluster including various experts and specialists such as domain experts, knowledge engineers, and programmers is in the collaborative cluster.
ConclusionKnowledge extraction is an emerging interdisciplinary field in knowledge management and has a direct and significant impact on the country's economy. Knowledge development and integration of key issues in knowledge extraction are essential. According to the findings of this study, for the promotion and advancement of this process in the service industry, it is suggested to provide a strategic view in the use of metadata analysis of the context of activity and success of the service industry in knowledge extraction. Moreover, knowledge management as the primary discipline and domain can guarantee success in this process. The clusters identified in this study are also divided into three practical, strategic, and collaborative knowledge clusters. Moreover, the results of this research can help managers of organizations, especially their knowledge managers, to plan and make decisions in the field of service industries to facilitate optimal knowledge extraction and maintain competitive advantage.
Keywords: knowledge extraction, Knowledge management, Bibliometrics, Science mapping, knowledge cluster, Thematic Mapping, Service Industry
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.