جستجوی مقالات مرتبط با کلیدواژه "مدل precis" در نشریات گروه "جغرافیا"
تکرار جستجوی کلیدواژه «مدل precis» در نشریات گروه «علوم انسانی»-
در این مطالعه، به بررسی تغییر آب و هوا در حوضه دز، بهعنوان یکی از مهمترین حوضه های کشور از لحاظ آورد آبی و کشاورزی، پرداخته شده است. برای این منظور، از مدل ریزمقیاسنمایی دینامیکی PRECIS، برای برآورد بارش و دما در دوره 2070 تا 2100 و تحت دو سناریوی A2 و B2 استفاده شده است. نتایج نشان می دهد که مقدار بارندگی مشاهده ای طی دوره پایه، دارای روند منفی و دما دارای روند مثبت است. نتایج ارزیابی مدل PRECIS نشان می دهد که به طورکلی، این مدل میتواند برآورد مناسبی از بارش و دما در منطقه داشته باشد. بررسی تغییرات آب و هوایی در حوضه دز نشان داد که تحت سناریوی A2، مقدار بارش حدود 22 درصد کاهش و میانگین دمای حداقل و حداکثر، حدود 5 درجه افزایش خواهند داشت. برای سناریوی B2، مقدار بارش حدود 33 درصد کاهش و مقدار میانگین دمای حداقل و حداکثر، حدود 3 درجه افزایش خواهند داشت.
کلید واژگان: تغییر آب و هوا, مدل آب و هوایی سیارهای, ریزمقیاسنمایی, مدل PRECIS, حوضه دزAny changes in the concentrations of greenhouse gases are causing imbalance status in system components. However, these changes along whit their effects the future should be simulated. There are different methods for the use of climate models is the most reliable.Here in this research, climate change status in Dez river basin where a major basin for water and agricultural yields is studied. For this purpose, the PRECIS model was used. PRECIS is an exponential dynamics downscaling model used to estimate the temperature and precipitation rates for the period of 2070 to 2100 under A2 and B2 scenarios. According to the results of climate change assessment under scenario A2 for Dez river basin, precipitation would decrease up to 22% and up to 5 degrees centigrade would rise in average maximum and minimum temperature while concerning B2 scenario, a decrease in precipitation up to 33% and a rise in temperature rise up to 3°C are estimated.
Keywords: Climate Change, climate change model, Downscaling, PRECIS model, Dez basin -
در این مقاله، برونداد مدل گردش عمومی جو HADAM3P با مدل منطقهای PRECIS در دورهی 1990-1976 ریزمقیاسنمایی دینامیکی شد و داده های بارش ایران در مقیاسهای زمانی ماهانه و فصلی در دو حالت با و بدون چرخهی سولفور، مورد ارزیابی قرار گرفت. در پژوهش حاضر، مدل PRECIS با تفکیک افقی 44/0 درجهی جغرافیایی در شبکه هایی با ابعاد حدود 2500 کیلومترمربع اجرا شد و نتایج حاصل از اجرای مدل به دو روش ناحی های و ایستگاهی با داده های واقعی ایستگاه های هواشناسی مقایسه شدند، سپس میانگینهای خطا و اریبی بارش ماهانه و انحراف معیار آن برای نواحی مختلف محاسبه شدند. میانگین خطای شبیهسازی حدود 3/5 درصد برآورد شد که بیشترین میانگین خطای شبیهسازی در نواحی بارشی فارسی، هرمزی، خوزی و خزری بهترتیب با 9/24، 9/16، 2/12 و 2/10- درصد و کمترین میانگین خطای شبیهسازی در نواحی بارشی کردی، آذری، میانهی شمالی و خراسان شرقی با حدود یک درصد محاسبه شد. اریبی مثبت بارش در نواحی جنوبی کشور ممکن است ناشی از تزریق رطوبت از یاخته های بزرگمقیاس مدل گردش عمومی به ساختار ریزمدل منطقهای باشد. همچنین اریبی منفی بارشهای خزری میتواند بهدلیل ضعف مدل منطقهای PRECIS در پارامترسازی بارشهای همرفتی این منطقه باشد. علاوهبرآن، بیشترین میانگین خطای شبیهسازی ماهانه در ماه های گرم سال دیده شد که در آنها وقوع یک بارشهای ناگهانی همرفتی میتواند منجر به خطای کمابیش بزرگی شود. کمترین میانگین اریبی فصلی در بهار با 1/0میلیمتر و بیشترین آن در زمستان با 2/17- میلیمتر رخ داده است. نتایج این پژوهش نشان میدهد که مدل منطقهای PRECIS توانمندی شبیهسازی بارشهای کلی کشور را دارد؛ اما توانمندی آن در شبیهسازی بارشهای ناحی های و همرفتی ضعیف است.
کلید واژگان: مدل PRECIS, بارش ایران, میانگین خطا, ریزمقیاس نمایی دینامیکیIntroduction Iran has very complicated topography and climate including two mountain chains of Zagros and Elborz, two wide deserts of Kevir-e-lut and Dasht-e-kevir, forest lands and three large water bodies of Caspian Sea, Persian Gulf and Oman Sea. Climatically, Iran has a variable climate. Winters are cold with heavy snowfall in the northwest and below freezing temperatures during December and January. Spring and fall are relatively mild, while summers are dry and hot. In the south, winters are mild and the summers are very hot. On the Khuzestan plain, summer heat is accompanied by high humidity (Alijani, 2003). The intergovernmental Panel on Climate Change (IPCC) reported that the global mean temperature has been increased 0.6o C during 20th century while the atmospheric concentration of carbon dioxide also increased from 280ppm to 370 ppm in third Assessment Report (TAR) published in 2001(Kwon, 2005). Validation of PRECIS regional climate model in Bangladesh is performed with the surface observational data of rainfall and temperature (maximum and minimum) at 26 observational sites throughout the country from 1961-1990. It is found that regional analysis provides overestimation of PRECIS values in Bangladesh whereas data extracted at some particular locations provide better performance of PRECIS. For baseline, the performance of PRECIS is about 90% for rainfall.PRECIS can detect about 96% and 100.3% of maximum and minimum temperature respectively (Islam et. al., 2005). Climate change in the past decade in Jianghuni valley is studied by using statistical techniques. Both frequency and strength of extreme climate events such as hot weather, droughts and floods have increased remarkably since 1990s. Also, the regional climate model of PRECIS is used to provide a prediction of future climate in the valley. The results give an average surface warming of 2.9oC under the SRES B2 emission scenario by the end of this century (2071-2100). Precipitation may increase on the same period (Tian, et. al., 2006). Methodology Under Article of the United Nation Framework Convention on Climate Change (UNFCC), all Parties must study the impact of climate change in their countries using regional climate models. To do this, a PC-based regional climate model named PRECIS has been developed at the Hadley Center of United Kingdom Meteorology Office. PRECIS is based on the atmospheric component of the HadCM3 general circulation model. The atmospheric dynamics module of PRECIS is a hydrostatic version of the full `primitive equations and uses a regular longitude-latitude grid in the horizontal and a hybrid vertical coordinate. In this research monthly to seasonal precipitation of Iran has been modeled using PRECIS regional climate model with HadAM3P boundary condition data. PRECIS has a horizontal resolution of 50 km with 19 levels in the atmosphere (from the surface to 30 km in the stratosphere) and four levels in the soil. The present version of PRECIS has the option to downscale to 25 km horizontal resolution. In addition to a comprehensive representation of the physical processes in the atmosphere and land-surface, it also includes the sulphur cycle. The validation of model has been done by comparing observation data and model output data with two different methods of region to region and station to station. For this study, the PRECIS model domain has been set up with a horizontal resolution of 50 x 50 km. The domain is roughly stretched over the latitude 23 to 45?N and longitude 43 to 68?E. The HadAM3P global data set is used to drive the PRECIS model. The horizontal resolution of the HadAM3P boundary data is 150 km and for the present and future climate, it covers the period 1960-1990 and 2070-2100 respectively (Wilson et al., 2005). For the future climate, both SRES A2 and B2 greenhouse gas emission scenario is selected. Results and Discussion Seasonal to annual error and bias of the model outputs have been calculated using to different approach of region to region and station to station methods. We considered Masoudian's zoning (Masoudian, 1387) approach of the precipitation of Iran for computing regional error and bias of the model. In this approach precipitation region of Iran have been categorized in 12 regimes of South Central, Farsi, Kordi, Sistani, West Khorasan, East-Khorasan, North Central, Khuzi, Hormozi, Azari, Baluchi and Khazari. It is found that overall error of model is 5.3%. Maximum error has occurred over Farsi, Hormozi, Khuzi and Khazari regions with errors of 24.9, 16.9, 12.2 and -10.2 respectively. Minimum errors occurred over Kordi, Azari, and Northern central and eastern Khorasan regions. Maximum monthly errors occurred in September, the transition month between summer and autumn and minimum monthly precipitation has happened in May. It seems that wet bias of simulations in Southern regions can be due to transferring of high amount of humidity from large-scale GCM’s cells into RCM’s fine cells. Also dry bias of simulations in Caspian region is because of low ability of PRECIS in parameterizations of convective precipitations. Results show the regional errors are found in Farsi and Hormozi regions and minimum errors are in Kordi and North-Central regions. Maximum and minimum monthly errors are found in September and December, respectively. Conclusion As a main result, PRECIS skill in modeling regional precipitation, especially over the regions with high amount of convective and local precipitation is low, but it can model well the total precipitation of Iran. Average error of modeling over the country is less than 2%, but maximum regional error of modeling is 10% in Farsi region. Maximum precipitation errors are found in transition months. We found that PRECIS can model overall precipitation of Iran well, but it has some deficiency in modeling convective precipitation in Caspian region and southern part of Iran. There is no significant difference between PRECIS-modeled data and actual data retrieved from weather stations. So, as a powerful regional model, PRECIS can be used for regional climate modeling over Iran and future climate change projections. -
استفاده از پراکنش های مکانی بارش و دما نقش مهمی در افزایش دقت خروجی مدل های هیدرولوژیکی دارند. هدف از این مقاله تهیه پراکنش های مکانی دما و بارش در آینده در حوضه آبریز رودخانه قره سو است. حوضه آبریز مورد مطالعه در شمال غرب کشور و در استان اردبیل قرار دارد. این حوضه آبریز از نظر تولید محصولات کشاورزی در ایران دارای اهمیت بسیار است. در تهیه پراکنش های مکانی بارش و دما از روش های درونیابی شامل روش های وزنی عکس فاصله، توابع پایه شعاعی(RBF)، مکانی چند جمله ای و کریجینگ از نرم افزار ArcGIS استفاده شده است. بدین منظور ابتدا داده های ماهانه بارندگی و دما در حوضه آبریز رودخانه قره سو با استفاده از 10 ایستگاه هواشناسی در سال 2004 تهیه شد، سپس به منظور انتخاب روش مناسب برای تهیه پراکنش های مکانی بارش و دمای حوضه آبریز کارایی روش های زمین آمار مورد بررسی قرار گرفت. با محاسبه شاخص های میانگین خطا و ریشه میانگین مربعات خطا و مقایسه، روش وزنی عکس فاصله مناسب ترین روش برای تهیه پراکنش مکانی دما و روش RBF برای تهیه پراکنش های مکانی بارش در این حوضه شناخته شده است. در صورتیکه با کمک روشی بتوان پراکنش های مکانی بارش و دما در آینده را تهیه کرد، می توان پیش بینی های دبی را با استفاده از مدل های هیدرولوژیکی انجام داد. در این مقاله الگوریتم روشی بیان شده که می توان به کمک آن پراکنش های مکانی بارش و دما در آینده را تهیه کرد. برای پیش بینی پراکنش های مکانی دما و بارش در آینده نیاز به یک مدل پیش بینی کننده متغیرهای آب و هوایی است که در این مقاله از داده های مدل اقلیمی منطقه ای PRECIS استفاده شده است. خروجی داده های مدل PRECIS با قدرت تفکیک 50×50 کیلومتر بر اساس سناریوی B2 از سری سناریوی SERS و برای سال های 2071 تا 2100 است. نتایج پراکنش های مکانی دما در حوضه نشان می دهد که دما در تمامی حوضه آبریز رودخانه قره سو نسبت به دوره پایه بین 2 تا 5 درجه سانتیگراد افزایش می یابد و همچنین نتایج پراکنش های مکانی بارش در حوضه به دلیل افزایش و کاهش در ماه های مختلف سال روند خاصی را تسبت به دوره پایه نشان نمی دهد.
کلید واژگان: پیش بینی پراکنش های مکانی بارش و دما, حوضه آبریز رودخانه قره سو, مدل PRECIS, روش های درون یابیIntroductionPrecipitation and temperature patterns have especial role in the accuracy of hydrologic models. The future patterns of rainfall and temperature can lead to better hydrological predictions. Hence, according to their importance, we try to derive the future rain and temperature patterns of the Gharehsoo River’s watershed. This watershed has been placed in the northwest of Iran in Ardebil province and it has high amount of agriculture productions. Interpolation schemes are utilized in this study to determine the rain and temperature patterns. The utilized software package is ArcGIS software. These interpolation techniques are included of Inverse Distance Weighting (IDW), Global polynomial, Local polynomial, Radial Basis Functions (RBF), ordinary Kriging and simple Kriging. Firstly, we gather the monthly temperature and precipitation data of 10 synoptic stations in 2004. Then, the interpolation schemes are evaluated in order to determine the best temperature and precipitation patterns. The evaluation criteria in this study were Root Mean Square Error (RMSE) and Mean Error (ME). The results of evaluation of different interpolation schemes demonstrated that IDW and RBF method are the best schemes for the spatial modeling of temperature and precipitation patterns, respectively. Using these patterns, it is straightforward to predict runoff using hydrological models. In this paper, a new algorithm is proposed for the prediction of temperature and precipitation patterns for future (2100). To predict temperature and precipitation pattern, it is necessary to utilize of a predictor model to predict the amount of precipitation and temperature. Then the amount of precipitation and temperature are converted to spatial pattern of precipitation and temperature using the developed algorithm in this study. PRECIS model that is a regional climate model was utilized as predictor model in this study.Materials And Methodsa) case study: The studied area (Gharehsoo river watershed) is located in the Northwest of Iran, between longitudes coordinates 47°45’ and 48°42’ E, and between latitude coordinates 37°46’ and 38°34’ N. The Gharehsoo river watershed area is approximately 4100 km2 and plays significant agricultural role in Iran. the mountainous areas have been located in the western and southeastern parts of watershed. Furthermore, there are many pasture and agriculture lands in this watershed. Watershed elevation varies from 1170 m in Gharehsoo river outflow to 4732 m in Sabalan mountainous. The precipitation in the watershed is highly related to the topography and wind in the watershed.. The sea fronts and orographic conditions are the main factors for precipitation in the western and eastern parts of watershed. In the winter, the cold front of Mediterranean Sea, coupled with the local effects of Sabalan Mountains lead to orographic rainfalls. In summer, weather conditions are predominant of Caspian Sea front is the major factor for precipitation in the eastern part of catchment. Autumn and spring rainfalls are the results of interaction between African-Mediterranean and Caspian Sea fronts. b) Data: Temperature and precipitation data are two basic climatologically variables, measured at meteorological stations. Monthly precipitation (mm) and temperature data for 2004 was provided through Iran Meteorological Organization. The number of stations in the watershed and near to watershed was 11 stations. c) PRECIS ModelPRECIS (Providing Regional Climates for Impacts Studies) is a regional modeling system that can be run over any area of the globe on a relatively inexpensive, fast PC to provide regional climate information for impacts studies. The idea of constructing a flexible regional modeling system originated from the growing demand of many countries for regional-scale climate projections. Only a few modeling centers in the world have been developed RCMs (Regional Climate Models) and utilize them to generate projections over specific areas, because it needs high amount of computational effort and time. The Hadley Centre has configured the third-generation of Hadley Centre RCM, named PRECIS that is easy to set up. The past (1961-1990) and future climate SRES B2 scenario (2071-2100) were simulated by PRECIS model at a spatial resolution of 50×50 km for Iran.Results And DiscussionIt’s necessary to have a series of precipitation and temperature patterns to produce monthly patterns for future. These series of maps are generated using the precipitation and temperature patterns of 2004. The hyetograph maps are calculated by the ration of total volume of precipitation in January and the area of watershed. The calculated total volume of precipitation in January using the precipitation pattern map was about 490 million m3. The ration of volume and the area of watershed was about 0.117 m. This number shows the average precipitation of January. Similarly, these operations can be performed for the other months of 2004. The unit hyetograph and thermograph maps are generated by dividing the precipitation and temperature patterns in 2004 to their corresponding monthly precipitation and temperature values. The precipitation and temperature data were extracted from the PRECIS model for 2100. The monthly temperature data of 2100 shows an increase of temperature about 2 to 5 degrees in future, but there is no specific trend in precipitation data. If the amount of the monthly temperature and precipitation of 2100 are divided by these amounts in 2004, the amount of B parameters are calculated for precipitation and temperature in different months. Finally, the precipitation and temperature patterns will be obtained by the product value of B parameters and unit hyetograph or thermograph maps in each month, respectively.ConclusionA new method was developed for reasonable prediction of spatial patterns of precipitation and temperature. This new method uses of the results of a Regional Climate Model (e.g. PRECIS model) coupled with the appropriate spatial modeling techniques (interpolation techniques). The derived precipitation and temperature patterns in 2100 in Gharehsoo River watershed show a reasonable similarity with the topography and the climate of the region, Hence This method can be introduced as an appropriate method for the hydrological forecasts and water resource management.Keywords: prediction, spatial distribution of precipitation, spatial distribution of temperature, Gharesoo river watershed, PRECIS, interpolation techniques
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.