جستجوی مقالات مرتبط با کلیدواژه "مشتقات dem" در نشریات گروه "جغرافیا"
تکرار جستجوی کلیدواژه «مشتقات dem» در نشریات گروه «علوم انسانی»-
زمین به عنوان یک سطح پیوسته می تواند به واحدهای دارای خصوصیات فیزیکی و مورفولوژیکی مشترک طبقه بندی شود که ممکن است به عنوان یک شرط مرزی برای طیف گسترده ای از حوزه های کاربردی باشد. این مطالعه روشی برای طبقه بندی فرم زمین ارایه می دهد که ژیومورفومتری عمومی چشم انداز را نشان می دهد. در پژوهش حاضر شهرستان ماکو در آذربایجان غربی بنا به شرایط خاص منطقه ازنظر مورفولوژی و محیط پیرامونی انتخاب و برای استخراج لندفرم ها از روش فازی شیءگرا استفاده شد. به منظور انجام پردازش، مشتقات لایه رقومی ارتفاع (شیب، بافت انحنای حداکثر، حداقل، مسطح و انحنای پروفیل) به همراه تصویر ماهواره سنتینل 2A مورد استفاده قرار گرفت. پس از انجام مراحل پیش پردازش، ابتدا مقیاس بهینه سگمنت سازی با استفاده از افزونه ESP پیش بینی گردید و سپس اشیاء تصویر برای انجام پردازش با مقیاس 9 و 17 و 27 ایجاد شد. به منظور استخراج لندفرم ها از تعداد 160 نمونه زمینی استفاده و درجه عضویت الگوریتم های مختلف محاسبه گردید و الگوریتم هایی که بیشترین درجه عضویت را داشتند برای طبقه بندی استفاده شدند. در این تحقیق تعداد 14 نوع لندفرم در منطقه مطالعه شناسایی و استخراج گردید. نتایج تحقیق نشان می دهد که روش فازی شیءگرا توانسته است با دقت کلی 87 درصد و شاخص کاپای 85 درصد لندفرم ها را طبقه بندی کند. مزیت روش های شیءگرا این است که خیلی سریع بوده و نتایج دارای دقت خوب و بالایی هستند.
کلید واژگان: استخراج لندفرم ها, سنجش از دور, شیءگرا, تصاویر سنتینل 2A, مشتقات DEM, شهرستان ماکوIntroductionLandforms represent influential processes affecting features on the earth’s surface both in the past and in the present while providing important information about the characteristics and potentials of the earth. The shape of the terrain and features such as landforms affect the flow in water bodies, sediment transport, soil production, and climate at a local and regional scale. Identification and classification of landforms are among the most important purposes of geomorphological maps and also a fundamental step in the process of producing such maps. Geomorphologists have always been interested in achieving a proper and accurate classification of landforms in which their morphometric properties and construction processes are clearly indicated. The present study has attempted to develop a new method and identify the relationship between morphometry of landforms and surface processes using a multi-scale and object-based analysis. Extraction and classification of landforms are especially important in mountainous areas, which are considered to be dynamic due to their special physical and climatic conditions. These areas are often remote and sometimes unknown. Mountainous topography has also made them difficult to access. However, they are of great importance due to their impact on the macro-regional system. Because of this significant importance, Maku County was selected as the study area.
Materials and methodsMaku County is located in northwestern Iran (West Azerbaijan Province) which borders Qarasu River and Turkey in the north, Aras River and the Republic of Azerbaijan in the east, Turkey in the west, and Shut County in the south. This County is located between 44° 17' and 44° 52' east longitude and 39° 8' and 39° 46' north latitude. The present study takes advantage of satellite images (sentinel-2A) with a spatial resolution of 10 m, derivatives of DEM layer (slope, maximum curvature, and minimum curvature, profile and plan curvature) and object-based methods to identify and extract landforms of the study area precisely.
Discussion and resultsThe present study applies various functions and capabilities of OBIA techniques to extract landforms precisely. These functions include texture features (GLCM), average bands in the image, geometric information (shape, compression, density, and asymmetry), brightness index, terrain roughness index (TRI), maximum and minimum curvature, texture, and etc. The image segmentation scale was first optimized in the present study using ESP tools and objects of the image were created on three levels (9, 17, and 27 scales). In the next step, sample landforms were introduced, membership weights were calculated and defined for the classes in accordance with the fuzzy functions, and finally, 14 types of landforms were extracted using object-oriented analysis.
ConclusionFuzzy method includes boundary conditions, defines membership function, and constantly considers landform changes in class definition. Thus, it seems to be ideal for the purpose of the present study. The present study used two types of data (data derived from satellite imagery and DEM layer) along with OBIA approach to extract landforms. Classification of landforms based on fuzzy theory makes it possible to collect more comprehensive information from the earth's surface. Results indicate that fuzzy object-based method has classified landforms with an accuracy of 87% and a kappa index of 85%. Considering the resolution of the images applied in the present study, all features were extracted with an acceptable accuracy except for debris. This can be attributed to the fact that debris is usually accumulated in a small area on steep mountainsides, and thus remains hidden from satellites in nadir images. OBIA approach shows a high efficiency because it can combine spectral characteristics of various types of data (i.e. images and DEM data) and their derivatives while analyzing the shape of the segment, and size, texture and spatial distribution of segments based on their class and other neighboring segments.
Keywords: Landform extraction, Remote Sensing, Object based, Sentinel-2A images, Derivatives of DEM, Maku County
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.