جستجوی مقالات مرتبط با کلیدواژه "زنجیره مارکوف" در نشریات گروه "علوم پایه"
-
پیش بینی تغییرات آینده کاربری اراضی گام مهمی در برنامه ریزی و مدیریت صحیح حوزه آبخیز می باشد. بنابراین در این مطالعه به مدل سازی کاربری اراضی حوزه آبخیز سد درودزن پرداخته شد. ابتدا نقشه های کاربری اراضی سال های 1375، 1384، 1395 و 1400 در نرم افزار ENVI با الگوریتم حداکثر احتمال تهیه شدند. با استفاده از پرسپترون چندلایه شبکه عصبی و 6 متغیر توصیفی، نقشه های پتانسیل انتقال برای هر یک از زیر مدل ها، مدل سازی و با استفاده از زنجیره مارکوف میزان تخصیص تغییر به هر کاربری محاسبه شد. سپس با استفاده از مدل تغییر سرزمین LCM و دوره واسنجی 1395-1384، نقشه کاربری اراضی سال 1400 پیش بینی شد. به منظور بررسی صحت مدل سازی مقادیر موفقیت 92/1%، خطا 8/8% و هشدار خطا 94/2% محاسبه شدند. همچنین نسبت موفقیت به کل پیکسل های تغییر کرده 14% به دست آمد که بیانگر قابل قبول بودن نتایج مدل می باشد. سپس، نقشه کاربری اراضی سال 1429 پیش بینی شد. نتایج نشان داد که در سال 1429 در مقایسه با سال 1400 زمین های بایر، اراضی کشاورزی، مناطق مسکونی و باغات به ترتیب 54290، 7621، 4494 و ha 2391 افزایش می یابند. درحالی که مراتع و جنگل ها به ترتیب 68441 و ha 689 کاهش خواهند یافت.کلید واژگان: زنجیره مارکوف, شبکه عصبی مصنوعی, کاربری اراضی, LCMPredicting future landuse changes is an important step in the proper planning and management of watersheds. Therefore, in this study, the land use modeling of the Doroodzan Dam watershed was discussed. First, the land use maps of 1996, 2005, 2016 and 2021 were extracted using Envi software, and the maximum likelihood method. The transition potential maps were modeled for each of the sub-models by using multi-layer perceptron artificial neural network and 6 variables and Markov chain was used to calculate the allocation change to each land use. Then, the land use map for 2021 was predicted using Land Change Modeler (LCM) and 2005-2016 calibration period. To verify modeling accuracy, Hits 1.92%, Misses 8.8%, False Alarms 2.94% were calculated. The ratio of Hits to the total pixels has changed 14% indicates that model results are acceptable. Then, the land use map for the year 2050 was predicted. The results showed that given the predicted LC for year 2050 in comparison with the year 2021, bare land, agricultural land, residential areas and orchards will increase by 54290, 7621, 4494, and 2391 ha, respectively. Whereas grassland and forest cover will decrease 68441, and 689 ha, respectively.Keywords: Artificial Neural Network, Landuse, LCM, Markov Chain
-
روش های استنتاج ساختار جمعیت، و کاربردهای آن در شناسایی بیماری ها و آینده نگری درباره وضعیت جسمی و روانی انسان ها، اهمیت روزافزون یافته است. در این مقاله، ابتدا به بررسی انگیزه و اهمیت بررسی ساختار جمعیت پرداخته شده است. سپس کاربردهای استنتاج ساختار جمعیت در زیست شناسی و درمان انواع بیماری ها شرح داده شده است. آن گاه روش های استنتاج ساختار جمعیت و همچنین یافتن مدل بیماری متناظر با هر زیرجمعیت، برای جمعیت هایی که اعضای آن مخلوط یا غیرمخلوط هستند، به تفکیک، تشریح شده اند. در این باره، بر روش های استنتاج ساختار جمعیت با رویکرد بیزی، تاکید شده است، و دلایل برتری روش های بیزی بیان شده اند.
کلید واژگان: استنتاج ساختار جمعیت, مدل گرافیکی احتمالاتی, بیوانفورماتیک, مطالعات گسترده ژنوم, زنجیره مارکوف, جمعیت مخلوطMethods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of population structure in biology and the treatment of various diseases are described. Afterward, the methods of inferring the population structure as well as detecting the disease model correspond to each subpopulation, for populations whose members are admixture or not, are described separately. To this end, the methods of inferring the population structure through the Bayesian approach are emphasized and the reasons for the superiority of Bayesian methods are illustrated.
Keywords: Population Stratification, Probabilistic Graphical Model, Bioinformatics, Genome-Wide Association Studies, Markov Chain, Admixture Populations -
زمینه و هدف
ارزیابی و برآورد قابلیت انتقال با صحت بالا، یک گام مهم در روند مدل سازی و پیش بینی تغییرات کاربری اراضی و پوشش زمین است. هدف از این پژوهش، بررسی قابلیت تغییرات کاربری اراضی و پوشش زمین با استفاده از روش های رویه یادگیری بر مبنای نمونه وزنی مشابهت، رگرسیون لجستیک و ژیومد است.
روش بررسینقشه های کاربری اراضی و پوشش زمین مربوط به یک دوره زمانی 30 ساله (1364 تا1394) با استفاده از تصاویر ماهواره های لندست 5 و 8 تهیه شد. مدل سازی قابلیت انتقال کاربری اراضی و پوشش زمین با استفاده از روش های رویه یادگیری بر مبنای نمونه وزنی مشابهت، رگرسیون لجستیک و ژیومد و متغیرهای تاثیرگذار در روند تغییرات صورت گرفت. میزان صحت نتایج به دست آمده از مدل ها با استفاده از نقشه واقعیت زمینی تعیین شد. مراحل اجرایی این پژوهش در بازه زمانی سال های 1395 تا 1396 انجام شد.
یافته هامیزان ضریب کاپا برای روش های رویه یادگیری بر مبنای نمونه وزنی مشابهت، رگرسیون لجستیک و ژیومد به ترتیب 84/0، 76/0 و 67/0 محاسبه شد. بررسی نقشه های پیش بینی شده برای سال 1409 با استفاده از روش رویه یادگیری بر مبنای نمونه وزنی مشابهت و زنجیره مارکوف نشان داد که مساحت مناطق مسکونی، باغات و اراضی کشاورزی روند افزایشی و مساحت اراضی بایر، جنگل ها، مراتع و منابع آبی روند کاهشی خواهند داشت.
بحث و نتیجه گیریدر نهایت نتایج حاکی از دقت نسبتا بالای سه روش در برآورد قابلیت تغییرات کاربری اراضی و پوشش زمین است پاما با توجه به ضرایب کاپای به دست آمده، دقت روش رویه یادگیری بر مبنای نمونه وزنی مشابهت بیشتر از دو روش دیگر بوده است.
کلید واژگان: سنجش از دور, زنجیره مارکوف, مدل سازی, کاربری اراضی, پوشش زمینBackground and ObjectiveAssessing and estimating the high-accuracy transmission potential is an important step in the process of land use and land cover changes modeling and predicting. The aim of this study is to investigate the transmission potential of land use and land cover changes using Similarity Weighted Instance based Learning, Logistic regression and Geomod methods.
MethodThe land use and land cover maps for a 30-year period (1985-2015) were prepared using Landsat 5 and 8 satellite imagery. Land use and land cover transmission potential modeling was done using Similarity Weighted Instance based Learning, Logistic regression and Geomod methods and effective variables in the process of change. The accuracy of the results obtained from the models was determined by comparing with ground reality map for mentioned year.
FindingsThe Kappa coefficient of Similarity Weighted Instance based Learning, Logistic regression and Geomod were 0.84, 0.76 and 0.67, respectively. The investigating predicted maps for 2030 prepared by Similarity Weighted Instance based Learning and Markov chain showed that the area of residential areas, gardens and agricultural lands is increasing and the area of bare land, forests, pastures and water resources will have a decrease trend.
Discussion and ConclusionFinally, the results indicate a relatively high accuracy of three methods in estimating the transmission potential for land use and land cover changes, but according to the kappa coefficients, the accuracy of Similarity Weighted Instance based Learning method more than the other two methods.
Keywords: Remote sensing, Markov chain, Modeling, land use, land cover -
توالی های کربناته سازند مبارک، به سن می سی سی پی ان، واقع در البرز مرکزی و شرقی در دو برش تویه رودبار و کوه سیاهه، دارای مجموعه متنوعی از آثار فسیلی هستند. در این تحقیق سیکل های مختلف واحد های سنگی سازند مبارک با بکارگیری روش مارکوف و مشاهدات صحرایی بررسی شده و براساس ارائه یک توالی ایده ال، محیط رسوبی آن تفسیر شده است. برای انجام این کار، رسوبات این سازند به 5 مجموعه رخساره ای تناوب سنگ آهک های آرژیلی و شیل های تیره رنگ دارای ایکنوفاسیس زئوفیکوس، سنگ آهک های نازک تا متوسط لایه دارای ایکنوفاسیس کروزیانا، سنگ آهک های دارای ایکنوفاسیس اسکولایتوس، سنگ آهکهای متوسط تا ضخیم لایه دارای مخلوط ایکنوفاسیس کروزیانا و اسکولایتوس و تناوب سنگ آهک و شیل بدون تریس فسیل تقسیم شده است. آنالیز زنجیره مارکوف نشان می دهد که رسوبات سازند مبارک از سیکل های ضخیم شونده به سمت بالا تشکیل شده اند. یک سیکل کامل از قاعده به سمت بالا شامل تناوب سنگ اهک و شیل بدون تریس فسیل، سنگ آهک های آرژیلی و شیل های تیره رنگ دارای ایکنوفاسیس زئوفیکوس، کربناتهای نازک تا متوسط لایه دارای ایکنوفاسیس کروزیانا، کربناتهای دارای ایکنوفاسیس اسکولایتوس، کربناتهای متوسط تا ضخیم لایه دارای مخلوط ایکنوفاسیس کروزیانا و اسکولایتوس است. گسترش سیکلهای رسوبی دارای ایکنوفاسیس ها اساسا بوسیله عوامل محیطی از جمله نوع رسوب، مواد غذایی در دسترس، میزان اکسیژن و سطح انرژی کنترل می شود. در این سازند، 4 ایکنوفاسیس شناسایی شده که شامل ایکنوفاسیس کروزیانا، اسکولایتوس، زئوفیکوس و مخلوط کروزیانا-اسکولایتوس است.
کلید واژگان: سازند مبارک, زون البرز, ایکنوفاسیس, زنجیره مارکوفThe carbonate succession of the Mobarak Formation (Mississippian) located in Central and Eastern Alborz, have a diverse trace fossils in Toyeh Rodbar and Siaheh mountain sections. In this research, different lithofacies cycles of the Mobarak Formation are examined by Markov method as well as field observations, and depositional environment has interpreted by proposed ideal sequence. To do this, the deposits of this Formation have divided into five lithofacies associations including argilaceous limestones intercalated with dark shales bearing Zoophycos ichnofacies, thin- to medium-bedded limestones bearing Cruziana ichnofacies, limestones bearing Skolithos ichnofacies, medium- to thick-bedded limestones bearing mixed Skolithos and Cruziana ichnofacies, and limestones intercalated shales without any trace fossils. Markov chain analysis shows that Mobarak Formation deposits are composed of coarsening upward cycles. A complete cycle from base to top consists of limestones intercalated shales without any trace fossils, argilaceous limestones intercalated with dark shales bearing Zoophycos ichnofacies, thin- to medium-bedded limestones bearing Cruziana ichnofacies, limestones bearing Skolithos ichnofacies, and medium- to thick-bedded limestones bearing mixed Skolithos and Cruziana ichnofacies. The development of sedimentary cycles bearing Ichnofacies is primarily controlled by environmental factors, e.g. sediment type, food accessibility, oxygenation and energy level. In this Formation, four ichnofacies have been recognized including Cruziana, Skolithos, Zoophycos and mixed Skolithos–Cruziana ichnofacies. The inner ramp sediments are characterized by low-diversity Skolithos elements.
Keywords: Mobarak Formation, Alborz Zone, Ichnofacies, Markov chain -
زیستگاه های طبیعی از جمله مراتع و جنگل ها به عنوان یکی از مهمترین عناصر محیط زیست نقش بسیار مهمی در زندگی موجودات زنده و از جمله انسان دارند. در دهه های قبل و عصر حاضر توسعه شهری چنان بوده که به ایجاد عدم تعادل در چگونگی استفاده از اراضی شهری منجر شده و تبدیل کاربری های بکر به کاربری های شهری را در پی داشته است. در تحقیق حاضر برای پی بردن به تغییرات کاربری شهری، مرتعی و جنگل، شهر بهبهان، تصاویر ماهواره لندست سنجنده های ETM+ سال 1378 و OLI سال 1392 تجزیه و تحلیل شد. برای پیش بینی روند تغییرات تا سال 1406 از نقشه های پتانسیل انتقال رگرسیون لجستیک و روش زنجیره مارکوف استفاده شد. نتایج بررسی مساحت ها در دوره اول (1392-1378) نشان می دهد که مساحت کاربری شهری از 1605 هکتار در سال 1378 به 3157 هکتار در سال 1392 افزایش یافته است. همچنین بیشترین تخریب در مراتع (6233 هکتار) و سپس جنگل ها رخ داده است. در دوره دوم نیز (1406-1392) مساحت جنگل ها نسبت به سال 1392 بدون تغییر باقی مانده است اما روند افزایشی توسعه شهری و کاهشی مساحت مراتع در چشم انداز 1406 نیز ادامه خواهد داشت. همچنین در بازه زمانی مورد مطالعه تخریب اراضی کشاورزی برای تبدیل به مناطق مسکونی به طور چشمگیری افزایش یافته است به گونه ای که طی سال های 1378 تا 1392، 291 هکتار و در سال 1406، 626 هکتار از اراضی کشاورزی برای اهداف ساخت و ساز تخریب شده اند.کلید واژگان: توسعه شهری, مراتع, جنگل ها, رگرسیون لجستیک, زنجیره مارکوفModeling Land Use Pattern, City Behbahan City in the Period 2000 - 2028 Using Remote Sensing and GISNatural habitats such as rangelands and forests as one of the most sensitive elements of the environment and an important role in living organisms, including humans. In the decades before the present era of urban development has been such that an imbalance in the use of urban land led and pristine converted to urban land in others. In the present study to understand the changes in urban land, pasture and forest in Behbahan, images Landsat ETM + sensor OLI 2000 and 2014 were analyzed. CROSSTAB was used to assess the changes occurred. As well as to predict the trends of the year 2028 from the transmission potential maps logistic regression and Markov chain method was used. Results of the survey area in the first period (2000-2014) shows that urban land area of 1605 hectares in 2000 to 3157 ha in 2014 has increased. The most degradation of rangelands (6233 ha) and forests has occurred. The second period (2014-2028) compared to the 2014forest area remains unchanged, but increased urban development and reducing the area of pastures in Outlook 2028 will continue. In the period studied, the destruction of agricultural land for conversion into residential areas has increased significantly so that during 2000 to 2014, 291 hectares and in 2028, 626 hectares of agricultural land for construction purposes have been demolished.Keywords: Urban development, Grasslands, Forests, Logistic regression, Markov chain
-
در این نوشته، الگوریتم رتبه بندی گوگل مورد بررسی قرار می گیرد و روش های ریاضی به کار رفته در آن شرح داده می شود. در اینجا کاربرد مهمی از قضیه نقطه ثابت باناخ بیان شده و با استفاده از تکنیک اثبات این قضیه، نقطه ثابت مورد نیاز در الگوریتم رتبه بندی گوگل به دست می آید.کلید واژگان: الگوریتم پیج رنک, نقطه ثابت باناخ, زنجیره مارکوف -
یکی از ملزومات مدیریت منابع طبیعی، آمار به هنگام از تغییرات کاربری اراضی است که انسان از طریق آن، محیط زیست خود را تحت تاثیر قرار داده است. پژوهش حاضر با استفاده از مدل LCM به آشکارسازی و پیش بینی تغییرات کاربری اراضی شهرستان لاهیجان در استان گیلان در بازه زمانی 1984 تا 2020 پرداخته است. ابتدا تصاویر ماهواره لندست سال های 1984، 2000 و 2016 در پنج کلاس جنگل، مرتع، کشاورزی، مناطق انسان ساخت و منابع آبی طبقه بندی شدند. سپس پیش بینی کاربری اراضی سال 2016 با نقشه های کاربری سال های 1984 و 2000 انجام شد. از متغیرهای ارتفاع، شیب، بارش، فاصله از مناطق مسکونی، فاصله از اراضی کشاورزی، فاصله از مراتع، فاصله از حاشیه جنگل و فاصله از جاده به عنوان عوامل موثر بر تغییرات استفاده شد. ارزیابی صحت پیش بینی براساس نقشه های کاربری اراضی 2016 واقعیت زمینی و 2016 پیش بینی انجام شد که مقادیر موفقیت خنثی، موفقیت، هشدار خطا و خطا به ترتیب 04/88 درصد، 65/2 درصد، 45/8 درصد و 28/4 درصد به دست آمد که نشان دهنده انطباق قابل قبول تصویر پیش بینی شده با تصویر واقعیت زمینی است. در ضمن در تحقیق حاضر مقدار خطای حاصل از پیش بینی مدل حدود 6/12 درصد بود که کارایی و توانایی مدل را تایید می کند. طبق نتایج طی سال های 1984 تا 2016 سطح چشمگیری از پوشش جنگلی کاسته شده که با ادامه روند کنونی تغییر کاربری در آینده شاهد ادامه جنگل زدایی خواهیم بود. با توجه به روند جنگل زدایی منطقه مورد مطالعه، اجرای مطالعات آمایش سرزمین به منظور کاهش آثار منفی تغییر کاربری اراضی پیشنهاد می شود.کلید واژگان: استان گیلان, جنگل زدایی, مدل تغییر زمین, شبکه عصبی مصنوعی, زنجیره مارکوفUpdated land use change information is one of the necessary requirements for natural resource management. This research used LCM mol to tect and predict land use changes in Lahijan city in Guilan province during 1984-2020. Initially, Landsat satellite images of 1984, 2000, and 2016 were categorized into five classes of forest, rangeland, agriculture, human ma areas and water resources. Then elevation, slope, precipitation, distance from resintial areas, distance from agricultural lands, distance from rangeland, distance from forest margin and distance from roads were used as affecting factors on land use changes. Mol accuracy assessment was done by comparison of actual and predicted map of 2016. Accuracy assessment of prediction mol was done by comparison of actual and predicted maps of 2016. The values of Null success, Hits, Misses and False Alarms were 88.04, 2.65, 8.45 and 4.28%, respectively. Meanwhile, in the present study, the error of the prediction mol was about 12.6%, which confirmed the efficiency and ability of the mol. Results from 1984 to 2016 indicated that a significant area of forest cover was creased and the forestation will continue according to these observations. Regarding the process of forestation in the study area, the implementation of land use planning to reduce the negative effects of land use change is proposed.Keywords: Guilan province, Forestation, Land change moler, Artificial neural network, Markov Chain
-
رشد سریع جمعیت و افزایش فعالیت های بشر منجر به بهره برداری ناپایدار منابع و کاهش سریع در ذخایر طبیعی زمین می شود. در این مطالعه از تصاویر ماهواره ای لندست سنجنده ETM+ و OLI (سال های 2001 و 2008 و 2015 ) جهت تهیه ی نقشه کاربری اراضی استفاده شد. با توجه به هدف مطالعه 3 کاربری مناطق مسکونی، پوشش گیاهی و زمین های بایر تعریف شد. افزایش و کاهش ،تغییر خالص ، مناطق بدون تغییر و انتقال ین دو نقشه کاربری ارزیابی شدند. بر این اساس آن با استفاده از نقشه های سال های 2001 و 2008 نقشه کاربری اراضی در سال 2015 با روش زنجیره مارکف پیش بینی شد و نقشه پیش بینی شده با نقشه واقعی این سال مقایسه گردید. ازکاپای استاندارد برای بررسی صحت مدل سازی استفاده شد و با مقداری بالای 80 درستی آن تایید شد. در مطالعه حاضر، بررسی روند کلی تغییرات در بازه زمانی 14 ساله یعنی سال های 2001 تا 2015 نشان می دهد در تحلیل در این دوره، تبدیل سایر کاربری ها به طبقه مسکونی 8 درصد (1203 هکتار)، پوشش گیاهی به بایر 737 هکتار و بایر به پوشش گیاهی 554 هکتار بوده است. در فاصله 2008 تا 2015، گسترش و توسعه مناطق مسکونی این روند با سرعت بیشتری ادامه داشت.کلید واژگان: مدل ساز تغیییر کاربری سرزمین, رشد شهری, شبکه های عصبی مصنوعی پرسپترون چندلایه, پتانسیل انتقال, زنجیره مارکوفIntroductionRapid population growth and human activities have resulted in unsustainable exploitation of natural resources. Studying land changes, change detection and prediction are essential for analyzing developmental consequences over time and also for decision-making and implementing appropriate policy responses relating to land uses.
Land-Use Change modeling have become a top research topic in many scientific field recently. There are many approaches and models in use to perform spatially simulations, but among many land use modeling tools, LCM offers many advantages.
This modeler evaluates land changes between two different times, calculates the changes trend, gain and loses, Persistence and displays the results with graphs and maps. There are three approaches to produce the probability map: logistic regression, multilayer perceptron (MLP) and a similarity-weighted (SimWeight).
Multi-layer perceptron (MLP) creates a transition potential map for each group of transitions in order to allocate the simulated transitions. It use a Markov matrix to extrapolate the quantity of each transition and persistence.
Markov matrix generally obtains through the comparison of the land use maps from two dates. Markov chain projection provides the model with the estimated areas of each land use category for future dates and the amount of change for each transition.
LCM needs explanatory variables to improve the understanding of the causes, locations, and trends of land use changes. These variables are selected when they exhibit relatively high Cramer coefficient values for land cover categories. Cramers Coefficient indicates the degree to which each explanatory variable is associated with the distribution of land cover categories.
This study demonstrated that human disturbance include road and urban distance were the key factors in determining transition model in land change prediction.
We predicted land use changes in Bojnourd city using multi-temporal remote sensing data and a multi-layer perceptron (MLP) neural network with a Markov chain model. Remote sensing techniques applied to classify satellite imagery for 2001, 2008 and 2015.
Several studies have developed different modeling methods to simulate the pattern and consequences of land use changes. Arekhi (2011) modeled deforestation using logistic regression, GIS and RS in the Iran's west forests. In this research the effects of seven factors, distance from roads and residential areas, forest fragmentation index, distance from forest edge, aspect, elevation and slope was studied. The results indicated that with decreasing the distance from residential areas and roads, forest degradation will be more and the most of the deforestation occurred in the fragmented forest cover.
In other reaserch Joorabian Shooshtari and Gholamalifard (2015) explored changes in landscape pattern in northern Iran's Neka Basin for 1987, 2001, 2006, 2011, and 2017. Their studies revealed that during 19872001, agriculture was the main contributor to the increased built-up area, between 2001 and 2006 agriculture converted to orchard and residential, and between 2006 and 2011 forest regenerated from orchard and agricultural lands.
Numerous studies have assessed urban growth with different modeling methods around the world. These studies though mapped and focused on determining whether a change has occurred and how the change has evolved over time.
Wilson & Weng (2011), studied impacts of urban land use and climate changes on surface water quality within Des Plaines River watershed, Illinois. Low density residential growth, normal urban growth, and commercial growth are three future scenarios in this study that specified with Land Change Modeler (LCM).Materials And MethodsLand Change Models can be very useful tools for environmental and urban growth research concerning about land use change. LCM was used in this research to predict the land use map in 2015 using the following procedure: Change analysis and choice of explanatory variables, Transition potential modelling, Change prediction map and Model assessment.
A total area of 14438/03 hectares of Bojnourd city was taken as study area which has potential for expansion. IDRISI Andes was used to determine land change using three different land-use maps from 2001, 2008 and 2015. In This Study, A series of satellite images of Landsat Enhanced Thematic Mapper Plus (ETM) and Operational Land Imager (OLI) data (2001, 2008, and 2015) respectively were used to produce classified land use/cover map. It's necessary to assess the satellite data for their image quality.
Maximum likelihood classification were used to derive 3 land use categories in the study area. This way is based on the probability density function that is associated with a particular training site signature.
Accurate assessment land use maps, using ground control points, visual interpretation and Google earth were controlled. The classification accuracy and kappa coefficients was evaluated for land use maps.
The Land Change Modeler module in IDRISI software was utilized for land change detection and change trend analysis. For change analysis and prediction, first of all Land use maps for 2001 with 2008, 2008 with 2015, and 2001 with 2015 were used for analysis and detection of changes. Net change, Gains and losses, persistence and other modules were used to evaluate map transition potential.
The study used several variables including distance from road, distance from settlement, distance human disturbance, distance from vegetation edge, slope and qualitative variables.
Two land cover maps of two different times (2001 and 2008) were applied to predict potentially transition in the future. LCM available as IDRISI and ArcGIS extension) is a useful tool for the assessment and projection of land cover changes. Different modules are available to do this like cross tab module, gains and losses and etc.ResultsThe land-use maps were produced by supervised maximum likelihood classification and 3 classes (settlement areas, vegetation and burren land) were considered. Kappa coefficients obtained in this study was above 80%.
In this study, 3 major land use categories identified and mapped after field surveys, literature reviews and visual interpretation. Neural network training was carried out with the default setting (learning rate from 0.01 to 0.001, momentum 0.5, number of hidden nodes calculated as the average between numbers of input and output nodes, 10,000 iterations).
4 sub-models were identified which included burrenland to settlement areas, vegetation to settlement areas, vegetation to burrenland and burrenland to vegetation. Land use map of 2015 was predicted by using changes that occurred during the years 2001 and 2008.
The analysis of changes shows the expansion in settlement areas (1203 ha), burgenland (737 ha), vegetation area (554 ha) during the years 2001 2015. The land use change analysis for the next period (2008-2015), indicates that the area of settlement areas has increased. The transition from Burgenland and vegetation to settlement areas was 980 ha.
Discussion andConclusionThe objective of this research is to evaluate LCM as a land use model, focusing on its predictive power for the assessment of transition potential.
This study used Landsat ETM imageries of 2001 and 2008, and OLI/TIRS of 2015 to identify, classify, Assess and interpret changes in a city area. The land cover categories and their changes for these years were generated and analyzed in the Idrisi environment.
Land use scenarios for 14 years from 2001 to 2015 was performed using Markov analysis in LCM module in IDRISI software.
Land Change Models can be very useful tools for environmental and urban growth research concerning about land use change. Rapid urban growth in last decades is a big problem which prompt concerns about environmental issues over the accompanied environmental issues and the degradation of economical sustainability.
Land use maps are very vital for decision makers and environmental management purposes to evaluate land changes and the Causes of land degradation. LCM provides comparable and understandable maps and graph to demonstrate natural and environmental conditions. Monitoring land changes can provide valuable information for regional management and planning, but it's not enough. Prospective simulation supports decision-making for urban planner and environmental management. LCM, provides great advantages such as better monitoring changes, describe change trend, quantifying changes and also it can answer to questions with different scenarios like "what would happen if ".Keywords: Land Change Modeler (LCM), urban growth, multi layer perceptron algorithm of artificial neural (MLP), transition potential, Markov chain -
در این پژوهش کوشش شده است تا با به کارگیری روش های آماری و مدل سازی زنجیره مارکوف ، روشی آماری-احتمالی برای شناسایی یخبندان دیررس در باختر ایران ارائه شود. برای رسیدن به این هدف، مشاهدات کمینه ی دمای 37 ایستگاه همدید و 2 ایستگاه کلیماتولوژی، در دوره 35 ساله (2014-1980) از سازمان هواشناسی کشور فراهم شد. سپس با انجام میان یابی (درون یابی) ، به روش کریجینگ ، برای 12784 روز، در بازه زمانی موردبررسی، با تفکیک مکانی 6 در 6 کیلومتر و سیستم تصویری UTM یک پایگاه داده شبکه ای ساخته شد. در این پژوهش یخبندان دیررس برای هر نقطه، از منطقه موردمطالعه، روزی است که در آن احتمال رخداد یخبندان 10 درصد و کم تر باشد. از این برای هرروز از سال و هر یاخته (پیکسل) از منطقه ی موردبررسی، یک احتمال رخداد یخبندان برآورد شد. مراحل محاسباتی احتمال رخداد یخبندان، با استفاده از زنجیره مارکوف و در محیط نرم افزار متلب انجام شده و نقشه ها در محیط نرم افزار سورفر ترسیم شده است. دستاوردها نشان داد که در جنوب باختری منطقه تاریخ آغاز یخبندان دیررس بین 7 تا 15 اسفند و در شمال منطقه بین 1 تا 15 اردیبهشت است. شدت یخبندان های دیررس در جنوب باختری منطقه نسبت به شمال بیش تر است.کلید واژگان: یخبندان دیررس, احتمال, زنجیره مارکوفIn this research, the attempt is to introduce a probabilistic and statistical Method for identifying late winter frost in the west of Iran, applying statistical methods and Markov chain modeling. To do so, the acquired data about minimum temperature from 37 Synoptic stations and 2 Climatology stations of the 35-year period (1980-2014) were provided by the Meteorological Organization of the country. Then, by performing an interpolation, through Kriging method, for a period of 12784 days, in the time period under consideration, with 6 6 kilometer spatial resolution and a UTM video system, a network database was created. In this survey a late winter frosting event for each area of the surveyed region is a day in which the occurrence probability of a frost is 10% or less. Hence, for each day of the year and each cell (pixel) from the surveyed area, the occurrence probability of frost was estimated. The computational stages of the occurrence probability of frost included using the Markov chain in the MATLAB software and the maps were drawn in the Surfer software. The achievements reveal that in the southwest of the region, the late winter frost date is between 25 February and 5 March and in the north of the region between 21 April and 15 May. The severity of the late winter frosts in the southwestern area of the region is more than the northern part.Keywords: Late winter frost, probability, Markov chain
-
در این پژوهش کوشش شده است تا با به کارگیری روش های آماری و مدل سازی زنجیره مارکوف، روشی آماری-احتمالی برای شناسایی یخبندان دیررس در باختر ایران ارائه شود. برای رسیدن به این هدف، مشاهدات کمینه ی دمای 37 ایستگاه همدید و 2 ایستگاه کلیماتولوژی، در دوره 35 ساله (2014-1980) از سازمان هواشناسی کشور فراهم شد. سپس با انجام میان یابی (درون یابی) ، به روش کریجینگ، برای 12784 روز، در بازه زمانی موردبررسی، با تفکیک مکانی 6 6 کیلومتر و سیستم تصویری UTM یک پایگاه داده شبکه ای ساخته شد. در این پژوهش یخبندان دیررس برای هر نقطه، از منطقه موردمطالعه، روزی است که در آن احتمال رخداد یخبندان 10 درصد و کم تر باشد. از این برای هرروز از سال و هر یاخته (پیکسل) از منطقه ی موردبررسی، یک احتمال رخداد یخبندان برآورد شد. مراحل محاسباتی احتمال رخداد یخبندان، با استفاده از زنجیره مارکوف و در محیط نرم افزار متلب انجام شده و نقشه ها در محیط نرم افزار سورفرترسیم شده است. دستاوردها نشان داد که در جنوب باختری منطقه تاریخ آغاز یخبندان دیررس بین 7 تا 15 اسفند و در شمال منطقه بین 1 تا 15 اردیبهشت است. شدت یخبندان های دیررس در جنوب باختری منطقه نسبت به شمال بیش تر است.
کلید واژگان: یخبندان دیررس, احتمال, زنجیره مارکوفIn this research, the attempt is to introduce a probabilistic and statistical Method for identifying late winter frost in the west of Iran, applying statistical methods and Markov chain modeling. To do so, the acquired data about minimum temperature from 37 Synoptic stations and 2 Climatology stations of the 35-year period (1980-2014) were provided by the Meteorological Organization of the country. Then, by performing an interpolation, through Kriging method, for a period of 12784 days, in the time period under consideration, with 6 6 kilometer spatial resolution and a UTM video system, a network database was created. In this survey a late winter frosting event for each area of the surveyed region is a day in which the occurrence probability of a frost is 10% or less. Hence, for each day of the year and each cell (pixel) from the surveyed area, the occurrence probability of frost was estimated. The computational stages of the occurrence probability of frost included using the Markov chain in the MATLAB software and the maps were drawn in the Surfer software. The achievements reveal that in the southwest of the region, the late winter frost date is between 25 February and 5 March and in the north of the region between 21 April and 15 May. The severity of the late winter frosts in the southwestern area of the region is more than the northern part.
Keywords: Late winter frost, probability, Markov chain -
زمینه و هدفمیزان گسترش و تخریب منابع، با پیش بینی تغییرات پوشش و کاربری سرزمین مشخص می شود و از این طریق می توان این تغییرات را در مسیرهای مناسب هدایت کرد. در این مطالعه، هدف مدل سازی روند تغییرات پوشش/کاربری استان همدان با استفاده از تصویر ماهواره ای LANDSAT سنجنده TM در سال 1989 میلادی و تصویر سنجنده LISS3 ماهواره IRS مربوط به سال 2008 میلادی است.روش بررسیپس از انجام تصحیحات لازم به روش طبقه بندی نظارت شده با الگوریتم حداکثر احتمال، نقشه کاربری- پوشش اراضی برای محدوده مورد مطالعه در طی دو سال مورد نظر تهیه گردید، سپس با استفاده از زنجیره مارکوف با توجه به دو نقشه کاربری- پوشش اراضی به دست آمده، ماتریس احتمال انتقال کاربری ها به یکدیگر محاسبه شد. برای مکانی کردن این تغییرات از روش شبکه خودکار استفاده گردید.یافته هادر نهایت نقشه پوشش- اراضی استان همدان برای 19 سال بعد یعنی سال 1407 به دست آمد و مساحت هریک از کاربری ها به تفکیک برآورد شد.بحث و نتیجه گیرینتایج نشان می دهند که طبقات پوشش کاربری اراضی طبیعی در آینده روند کاهشی خواهند داشت و به کاربری های انسانی تبدیل خواهند شد. با توجه به افزایش جمعیت و نیز افزایش نیاز انسان به زمین و نیز تمایل انسان به بهره برداری از طبیعت، وقوع چنین تبدیلاتی قابل تصور است، اما باید روند این تغییرات مورد توجه قرار بگیرد تا منابع طبیعی منطقه به شیوه پایدار مورد بهره برداری قرار گرفته و این تغییرات منجر به نتایج وخیمی نگردد.کلید واژگان: مدل سازی, روند تغییر, زنجیره مارکوف, شبکه خودکار, استان همدانBackground And ObjectiveThe extent of spread and source degradation would be determined using prediction of land use/ land cover changes. In this way these changes would be guided in the right directions. The aim of this study is modeling the process of land use / land cover changes of Hamedan province using Landsat TM satellite image of 1989 and IRS LISS III image of 2008.MethodAfter running the necessary corrections, land use/ land cover maps of the study area in the past two years were obtained using supervised classification with maximum likelihood algorithm. Then probability matrix of land use transition (to each other) were calculated using Markov chain with respect to land use/ land cover map. In the next step, Cellular Automata method was used to geo specified these changes.
Findings: Finally land use/ land cover map of Hamedan province for 19 years later (2024) was obtained and the area of each land use/ land cover was calculated.
Discussion and Counclusion: The results of this research shows that natural land use/ land covers will be decreased and transmited to human land uses in future. These changes are conceivable due to population growth and increasing human needs to exploit the nature; but this process should be considered to exploit the natural resources in a sustainable manner to avoid severe consequences in future.Keywords: Modelling, Change Process, Markov Chain, Cellular Automata, Hamedan Province -
شناسایی و تفسیر ناهمگنی های زیرسطحی به ویژه رخساره های سنگی، همواره نقشی اساسی در ارزیابی و مدیریت منابع هیدروکربوری دارد. روش های گوناگونی برای مدل سازی ویژگی های گسسته مخازن هیدروکربوری، مانند رخساره های سنگی، ارائه شده اند که در بیشتر موارد به مدل سازی درون چاهی پرداخته و در مدل سازی دو یا سه بعدی در فضای میان چاه ها کاربرد ندارند. از این رو، ارائه روشی نوین که نتایج آن تطابق بهتری با واقعیت رخساره های مخزنی داشته باشد، همواره مورد توجه است و می تواند در کاهش ریسک تصمیم گیری موثر باشد. امروزه زنجیره مارکوف به عنوان روشی قدرتمند برای مدل سازی رخساره ها مورد استفاده قرار می گیرد و برمبنای احتمالات شرطی و ارائه ماتریس انتقال حالات است. مطالعه حاضر روی یکی از میادین هیدروکربوری جنوب باختر ایران صورت گرفته که در آن سازند آسماری مخزن اصلی هیدروکربور را تشکیل می دهد. در این مطالعه با استفاده از روش زنجیره مارکوف مدل سازی سه بخش اصلی سازند آسماری و پوش سنگ آن در یک مقطع به طول 12 کیلومتر و ستبرای 110 متر انجام شده است. بهترین نتیجه مدل سازی با استفاده از اطلاعات نه چاه و چهار افق لرزه ای بوده که به طور میانگین دقت 88 درصد را به همراه داشته است.
کلید واژگان: زنجیره مارکوف, رخساره سنگی, ماتریس انتقال حالات, مخازن هیدروکربوریModeling with Markov Chains Methodology, Case Study: Lithofacies in a Hydrocarbon Reservoir, SW IranIdentifying and interpreting subsurface heterogeneities, especially Litofacies, plays definitely an important role in assessing and managing hydrocarbon resources. Variety of methods have been developed in order to model discrete features of hydrocarbon reservoirs, as Litofacies, which the majority of them have focused on intra-well modeling, and are not applicable for 2D or 3D modeling between oil wells. Furthermore, developing a novel methodology to bring a more factual reservoir facies has always been a matter of attraction, and is effective in lowering risk of decision making in different exploratory stages. These days, Markov Chains is used as a powerful tool for facies modeling. This method is based on conditional probabilistic and providing transitional matrix of states. This study is carried out on an oil field, South-West Iran; where the Asmari Formation is its main reservoir. Here, interval of the Asmari Formation and its cap rock in a 12 kilometers long section, 110 meters width, is classified into three main parts, by the means of Markov Chains modeling. The best result of modeling was obtained with nine wells and four seismic horizons that brought 87% accuracy in average.Keywords: Markov Chains, Litofacies, Transitional Matrix of States, Hydrocarbon Reservoirs -
شناسائی وتفسیر ناهمگنی زیر سطحی به ویژه رخساره های سنگی، همواره نقش اساسی در ارزیابی ومدیریت منابع هیدرو کربنی دارد. روش های متنوعی برای مدل سازی ویژگی های گسسته مخازن هیدرو کربوری؛ نظیر رخساره های سنگی؛ ارائه شده اند که از این میان ارائه روشی نوین که نتایج آن تطابق بهتری با واقعیت رخساره های مخزنی داشته باشد. همواره مورد توجه بوده است. امروزه زنجیره مارکوف به عنوان روشی قدرتمند برای مدل سازی رخساره ها مورد استفاده قرار می گیرد که بر مبنای احتمالات شرطی وارائه ماتریس انتقال حالات است. در این مطالعه علاوه بر معرفی روش مدل سازی زنجیره مارکوف؛ جهت بهبود این روش به پیشنهاد راهکاری پرداخته شده است. این راهکار بر مبنای تغییر نوع حرکت زنجیره در روش مارکوف استوار است. مطالعه حاضر بر روی یکی از میادین هیدرو کربنی جنوب غرب ایران صورت گرفته است که در آن سازند آسماری مخزن اصلی هیدرو کربور را تشکیل می دهد که به مدل سازی سه بخش اصلی سازند آسماری وپوشش سنگ آن در یک مقطع به طول 12 کیلو متر وضخامت 110با استفاده از فرایند مارکوف وراهکار پیشنهادی پرداخته شده است. بهترین نتیجه مدل سازی با استفاده از اطلاعات دو چاه وپنج افق لرزه ای برای حالت به کار گیری حرکت رفت وبرگشتی بوده که بطور متوسط دقت 90در صد را به همراه داشته است.کلید واژگان: زنجیره مارکوف, رخساره سنگی, ماتریس انتقال حالت, مخازن هیدروکربوری, سازند آسماریProposing new approach for litho-facies modeling by use of Markov Chain method, an Iranian oil fieldReconnaissance and interpretation of underground heterogeneity, particularly litho-facies, always plays an important role in evaluation and management of hydrocarbon resources. Between various methods presented for modeling discrete characteristics of hydrocarbon reservoirs such as litho-facies, one with a more proper conformity with actual condition of reservoir facies is of great advantage. Formed on basis of probability and presenting transition matrix, Markov method is widely applied as a powerful tool for modeling the facies. In the present study, first the method is introduced in details; then, in order to optimize it, suggestion is made based on changing the type of the move of chain in simulation procedure. The case study is a 12 km long 110 m thick section of Anhydrite and three major members of Asmari Formation from an oil field, South-West Iran. This section is modeled through Markov procedure and proposed solution. The models set indicated that on basis of using the data from two wells and five seismic horizons, best result, with 90% accuracy, is for reciprocating motion.Keywords: Markov chain, Litho, facies, Transition matrix, Hydrocarbon reservoirs, Conditional simulation
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.