به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "mv algebras" در نشریات گروه "علوم پایه"

جستجوی mv algebras در مقالات مجلات علمی
  • A. Ledda *, G. Vergottini
    In this survey we consider the variety of unsharp orthomodular lattices. We will see that there are pretty smooth conditions that neatly generalize a great deal of the theory of orthomodular lattices. In particular, we will characterize the concept of block in this framework towards an appropriate notion of commutativity. Then, we capitalize on this fact and describe a categorical equivalence between orthomodular lattices, with fixed p-filters, and the variety of unsharp orthomodular lattices.
    Keywords: Boolean Algebras, Stone Algebras, Kleene Algebras, MV Algebras, Orthomodular Lattices, P-Filter, Categorical Equivalence, Non-Classical Logic, Sharp Element, Dense Element, Pseudo-Complementation, Regularity
  • G.G. Barbieri, G Lenzi *
    Some results about set theory and model theory of MV-algebras are collected, which allows us to count MV-algebras with various properties.
    Keywords: MV-Algebras, Set Theory
  • Giacomo Lenzi *
    ‎In this paper we consider MV-algebras and their prime spectrum‎. ‎We show that there is an uncountable MV-algebra that has the same spectrum as the free MV-algebra over one element‎, ‎that is‎, ‎the MV-algebra $Free_1$ of McNaughton functions from $[0,1]$ to $[0,1]$‎, ‎the continuous‎, ‎piecewise linear functions with integer coefficients‎. ‎The construction is heavily based on Mundici equivalence between MV-algebras and lattice ordered abelian groups with the strong unit‎. ‎Also‎, ‎we heavily use the fact that two MV-algebras have the same spectrum if and only if their lattice of principal ideals is isomorphic‎.‎As an intermediate step we consider the MV-algebra $A_1$ of continuous‎, ‎piecewise linear functions with rational coefficients‎. ‎It is known that $A_1$ contains $Free_1$‎, ‎and that $A_1$ and $Free_1$ are equispectral‎. ‎However‎, ‎$A_1$ is in some sense easy to work with than $Free_1$‎. Now‎, ‎$A_1$ is still countable‎. ‎To build an equispectral uncountable MV-algebra $A_2$‎, ‎we consider certain ``almost rational'' functions on $[0,1]$‎, ‎which are rational in every initial segment of $[0,1]$‎, ‎but which can have an irrational limit in $1$‎.‎We exploit heavily‎, ‎via Mundici equivalence‎, ‎the properties of divisible lattice ordered abelian groups‎, ‎which have an additional structure of vector spaces over the rational field‎.
    Keywords: MV-algebras‎, Prime spectrum‎, Lattice ordered abelian groups‎
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال