جستجوی مقالات مرتبط با کلیدواژه "multiplication module" در نشریات گروه "ریاضی"
تکرار جستجوی کلیدواژه «multiplication module» در نشریات گروه «علوم پایه»-
Let $R$ be a commutative ring, $M$ an $R$-module, and $n\geq 1$ an integer. In this paper, we will introduce the concept of $n$-pure submodules of $M$ as a generalization of pure submodules and obtain some related results.We say that a submodule $N$ of $M$ is a \emph {$n$-pure submodule of $M$} if $I_1I_2...I_nN=I_1N \cap I_2N\cap...I_nN\cap (I_1I_2...I_n)M$ for all proper ideals $I_1, I_2,...I_n$ of $R$.Keywords: Pure Submodules, $N$-Pure Submodule, Multiplication Module, Fully $N$-Pure Module
-
در این مقاله، به بررسی گردایه ای از مدول ها می پردازیم که مشبکه زیرمدول های رادیکال آن ها نوتری است. این گردایه از مدول ها که هر عضو آن رادیکال نوتری نامیده می شود به طور اکید شامل گردایه مدول های نوتری و مدول های آرتینی است. نشان خواهیم داد که همانند مدول های نوتری، مجموعه زیرمدول های اول کمین از یک مدول رادیکال نوتری متناهی است. همچنین حلقه را رادیکال نوتری گوییم، اگر به عنوان -مدول رادیکال نوتری باشد. اثبات خواهیم کرد که -مدول ضربی رادیکال نوتری است اگر و تنها اگر یک حلقه رادیکال نوتری باشد. به علاوه قضیه های کوهن و پایه هیلبرت را برای حلقه های رادیکال نوتری بیان و اثبات می نماییم.
کلید واژگان: زیرمدول رادیکال, مدول رادیکال نوتری, حلقه رادیکال نوتری, مدول ضربیIn this paper, we investigate radical Noetherian modules as a collection of modules whose lattice of radical submodules is Noetherian. The collection of radical Noetherian modules contains both families of Noetherian and Artinian modules properly. We will show that the set of minimal prime submodules of a radical Noetherian modules is finite. Also a ring $R$ is called radical Noetherian, if $R$ is a radical Noetherian $R$-module. We will prove that a multiplication $R$-module $M$ is radical Noetherian if and only if $R/Ann(M)$ is a radical Noetherian. Moreover, we will give and prove analogs of Cohen and Hilbert basis theorems for radical Noetherian rings.
Keywords: Radical Submodule, Radical Noetherian Module, Radical Noetherian Ring, Multiplication Module -
In this paper, our aim is to introduce and study the essential submodules of an $R$-module $M$ relative to an arbitrary submodule $T$ of $M$. Let $T$ be an arbitrary submodule of an $R$-module $M$, then we say that a submodule $N$ of $M$ is an essential submodule of $M$ relative to $T$, whenever for every submodule $X$ of $M$, $N\cap X\subseteq T$ implies that $(T:M)\subseteq ^{e}{\rm Ann}(X)$. We investigate some new results concerning to this class of submodules. Among various results we prove that for a faithful multiplication $R$-module $M$, if the submodule $N$ of $M$ is an essential submodule of $M$ relative to $T$, then $(N:M)$ is an essential ideal of $R$ relative to $(T:M)$. The converse is true if $M$ is moreover a finitely generated module.Keywords: multiplication module, faithful module, essential submodule
-
Let $R$ be a commutative ring with non-zero identity, $S\subseteq R$ be a multiplicatively closed subset of $R$ and let $M$ be an $R$-module. A submodule $N$ of $M$ with $(N:_{R}M)\cap S=\emptyset$ is said to be almost $S$-prime, if there exists an $s\in S$ such that whenever $rm\in N-(N:_{R}M)N$, then $sm\in N$ or $sr\in (N:_{R}M)$ for each $r\in R$, $m\in M$. The aim of this paper is to introduce and investigate some properties of the notion of almost $S$-prime submodules, especially in multiplication modules. Moreover, we investigate the behaviour of this structure under module homomorphisms, localizations, quotient modules, Cartesian product. Finally, we state two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are almost $S$-prime.Keywords: $S$-prime submodule, almost $S$-prime submodule, multiplication module
-
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 2, Summer-Autumn 2022, PP 185 -190
Let R be a commutative ring with identity, and let W be a unitary R-module. In this paper, we introduced the concept of a weakly semi-primary submodule as a generalization of the primary submodule, where a submodule X of W is called weakly semi-primary if the Rad(X:W)=(X:W)−−−−−−−√ is a weakly prime ideal of R, and from this work, we have provided some characteristics of weakly semi-primary submodule.
Keywords: Weakly semi-primary, weakly prime, multiplication module, Weakly semi-primary ring, local ring, finitely generated -
In this paper, we introduce the concept of primary submodules over S which is a generalization of the concept of S-prime submodules. Suppose S is a multiplicatively closed subset of a commutative ring R and let M be a unital R-module. A proper submodule Q of M with (Q :R M) ∩ S = ∅ is called primary over S if there is an s ∈ S such that, for all a ∈ R, m ∈ M, am ∈ Q implies that sm ∈ Q or san ∈ (Q :R M), for some positive integer n. We get some new results on primary submodules over S. Furtheremore, we compare the concept of primary submodules over S with primary ones. In particular, we show that a submodule Q is primary over S if and only if (Q :M s) is primary, for some s ∈ S.
Keywords: Multiplicatively closed subset, Multiplication module, Primary module, primary module over S -
Let R be a commutative ring with identity and n a positive integer greater than 1. In this paper, we introduce the concept of semi-n-absorbing submodules. A proper submodule N of an R-module M is called a semi-n-absorbing submodule of M if whenever a \in R, x \in M and a^nx \in N then ax \in N ora^n \in (N :R M). A number of results concerning semi-n-absorbing submodulesand examples of them are given. It is shown that if N is a semi-n-absorbing submodule of M and F is a flat R-module such that F \otimes N is proper in F \otimes M then F \otimes N is semi-n-absorbing in F \otimes M. We show that the converse holds when F is faithfully flat.
Keywords: Flat module, faithfully at module, multiplication module, semi-n- absorbing ideal, semi-n-absorbing submodule -
فرض کنید R یک حلقه جابه جایی یکدار و M یک R -مدول یکانی باشد. همچنین فرض کنید *(I(R مجموعه همه ایده آل های غیربدیهی R باشد. مکمل گراف M -اشتراکی ایده آل های R که با (ΓM(R نشان داده می شود، گرافی است با مجموعه ریوس *(I(R و دو راس متمایز I و J مجاورند هرگاه {IM∩JM={0 . در این مقاله، برای هر R -مدول ضربی M ، قطر و کمر (ΓM(R تعیین شده است. همچنین، نشان می دهیم اگر m,n>1 دو عدد صحیح باشند و Zn یک Zm -مدول باشد، مکمل گراف Zn -اشتراکی ایده آل های Zm ، تام ضعیف است.
کلید واژگان: قطر, کمر, تام ضعیف, مدول ضربیLet 𝑅 be a commutative ring with identity and 𝑀 be a unitary 𝑅-module,and let 𝐼(𝑅)* be the set of all nontrivial ideals of 𝑅. The complement ofthe 𝑀-intersection graph of ideals of 𝑅, denoted by Γ𝑀(𝑅), is a graphwith the vertex set 𝐼(𝑅)* , and two distinct vertices 𝐼 and 𝐽 are adjacentif and only if 𝐼𝑀∩𝐽𝑀={0}. In this paper, for every multiplication𝑅-module 𝑀, the diameter and the girth of Γ𝑀(𝑅) are determined. Also,we show that if 𝑚,𝑛>1 are two integers and ℤ𝑛 is a ℤ𝑚-module, thenthe complement of the ℤ𝑛-intersection graph of ideals of ℤ𝑚 is weakly perfect.
Keywords: Diameter, Girth, Weakly perfect, Multiplication module -
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a characterization of finitely generated multiplication modules.
Keywords: Multiplication module, Noetherian Ring, faithful module -
Let R be a commutative ring with identity and M be a unitary R-module. In this paper we generalize the concept multiplicatively closed subset of R and we study some properties of these genaralized subsets of M. Among the many results in this paper, we generalize some well-known theorems about multiplicatively closed subsets of R to these generalized subsets of M. Also we show that some other well-known results about multiplicatively closed subsets of R are not valid for these generalized subsets of M.Keywords: Multiplication module, Multiplicatively closed subset of R, (n
-
Categories and General Algebraic Structures with Applications, Volume:4 Issue: 1, Feb 2016, PP 63 -74Let R be a commutative ring with identity and M be a finitely generated unital R-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module M is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals of modules which are the direct sum of finitely generated module and finitely generated multiplication module are shown. Finally, we study some properties of modules that are the direct sum of multiplication modules in terms of Fitting ideals.Keywords: Fitting ideals, multiplication module, projective module
-
Let R be a commutative ring and let M be an R-module. We define the small intersection graph G(M) of M with all non-small proper submodules of M as vertices and two distinct vertices N,K are adjacent if and only if N∩K is a non-small submodule of M. In this article, we investigate the interplay between the graph-theoretic properties of G(M) and algebraic properties of M, where Mis a multiplication module.Keywords: Graph, non, small submodule, multiplication module
-
We state several conditions under which comultiplication and weak comultiplication modules are cyclic and study strong comultiplication modules and comultiplication rings. In particular, we will show that every faithful weak comultiplication module having a maximal submodule over a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplication R-module, then R is semilocal and M is finitely cogenerated. Furthermore, we define an R-module M to be p-comultiplication, if every nontrivial submodule of M is the annihilator of some prime ideal of R containing the annihilator of M and give a characterization of all cyclic p-comultiplication modules.
Moreover, we prove that every pcomultiplication module which is not cyclic, has no maximal submodule and its annihilator is not prime. Also we give an example of a module over a Dedekind domain which is not weak comultiplication, but all of whose localizations at prime ideals are comultiplication and hence serves as a counterexample to [10, Proposition 2.3] and [11, Proposition 2.4].Keywords: Comultiplication Module, r, Multiplication Module, p, Comultiplication Module -
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. The primary-like spectrum $Spec_L(M)$ is the collection of all primary-like submodules $Q$ such that $M/Q$ is a primeful $R$-module. Here, $M$ is defined to be RSP if $rad(Q)$ is a prime submodule for all $Qin Spec_L(M)$. This class contains the family of multiplication modules properly. The purpose of this paper is to introduce and investigate a new Zariski space of an RSP module, called Zariski-like space. In particular, we provide conditions under which the Zariski-like space of a multiplication module has a subtractive basis.Keywords: RSP module, Multiplication module, Zariski, like space, Subtractive subsemi, module, Subtractive basis
-
Primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. In fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly. In this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful property.Keywords: Primary, Primary, like submodule, like submodule, weakly primary, like submodule, primeful property, weakly primary, multiplication module
-
Let R be a commutative ring with identity and M be a unitary R-module. A proper submodule N of M is 2− absorbing if r 1, r2, r3 2 R, m 2 M with r1r2r3m 2 M implies r1r2m 2 N or r1r3m 2 N or r2r3m 2 N. Let ' : S(M) −! S(M) [ {ø} be a function where S (M) is the set of all submodules of M. We call a proper submodule N of M a '-2-absorbing submodule if r1, r2, r3 2 R, m 2 M with r 1r2r3m 2 N −'(N) implies that r1r2m 2 N or r1r3m 2 N or r2r3m 2N. We want to extend 2-absorbing ideals to '-2-absorbing submodules and we show that-2-absorbing submodules enjoy analogs of many ofthe properties of 2-absorbing ideals.
Keywords: Multiplication module, 2-absorbing ideal, 2-absorbing submodule, weakly 2-absorbing submodule
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.