جستجوی مقالات مرتبط با کلیدواژه "boundedness" در نشریات گروه "ریاضی"
تکرار جستجوی کلیدواژه «boundedness» در نشریات گروه «علوم پایه»-
International Journal Of Nonlinear Analysis And Applications, Volume:16 Issue: 1, Jan 2025, PP 1 -10Let $\mathbb{D}= \{\upsilon\in\mathbb{C}:|\upsilon|<1\}$ be the open unit disk in the complex plane $\mathbb{C}$ and let $H(\mathbb{D})$ be the space of all holomorphic functions on $\mathbb{D}$. For a non-negative integer $n$ and a function $f \in H(\mathbb{D})$, the $n^{th}-$ order differentiation operator is defined as $D^n f = f^{(n)}$. The weighted composition operator together with $n^{th}-$ order differentiation operator give rise to a new operator generally termed as generalized weighted composition operator denoted by $\mathcal{W}^{n}_{\phi,\xi}$ and is defined by\begin{equation*}\mathcal{W}^{n}_{\phi,\xi}f(\upsilon) =\phi(\upsilon)f^{(n)}(\xi(\upsilon)),\quad f\in H(\mathbb{D}); \upsilon\in%\mathbb{D},\end{equation*}where $\phi\in H(\mathbb{D})$ and $\xi$ is a holomorphic self-map of $\mathbb{D}$. This operator is basically the combination of multiplication operator $M_{\phi}$, composition operator $C_{\xi}$ and $n^{th}-$ order differentiation operator $D^{n}$. We study the boundedness and compactness of this operator between Dirichlet-type spaces and Bloch-type spaces.Keywords: Dirichlet-Type Space, Bloch-Type Spaces, Generalized Weighted Composition Operator, Boundedness, Compactness
-
فرض کنید $H(\mathbb{D})$ مجموعه تمام توابع تحلیلی روی $\mathbb{D}$ $u,v\in H(\mathbb{D} و $\varphi,\psi$ دو خودنگاشت $\linebreak(\varphi,\psi: \mathbb{D}\rightarrow \mathbb{D}) $ باشند. تفاضل دو عملگر ترکیبی وزن دار $uC_\varphi -vC_\psi$ به صورت زیر تعریف می شود \begin{align*} (uC_\varphi -vC_\psi)f(z) = u(z) f{(\varphi(z))}- v(z) f(\psi(z)) ,\quad f\in H(\mathbb{D}), \quad z\in \mathbb{D}. \end{align*} در این مقاله کرانداری تفاضل دو عملگر ترکیبی وزن دار از فضای تبدیل کوشی به فضای دیریکله مورد بررسی قرار خواهد گرفت و شرط معادلی برای کرانداری عملگر مذکور ارائه خواهد شد. پس از آن نرم عملگر ترکیبی بین فضاهای مذکور مورد مطالعه قرار خواهد گرفت و نشان داده خواهد شد که $\|C_\varphi\|\geq 1$ و عملگر ترکیبی از فضای تبدیل کوشی به فضای دیریکله طولپا نیست.کلید واژگان: کرانداری, فضای دیریکله, فضای کوشی ترانسفرم, طولپاLet $H(\mathbb{D})$ be the space of all analytic functions on $\mathbb{D}$, $u,v\in H(\mathbb{D})$ and $\varphi,\psi$ be self-map $(\varphi,\psi:\mathbb{D}\rightarrow \mathbb{D})$. Difference of weighted composition operator is denoted by $uC_\varphi -vC_\psi$ and defined as follows \begin{align*} (uC_\varphi -vC_\psi)f(z) = u(z) f{(\varphi(z))}- v(z) f(\psi(z)) ,\quad f\in H(\mathbb{D} ), \quad z\in \mathbb{D}. \end{align*} In this paper, boundedness of difference of weighted composition operator from Cauchy transform into Dirichlet space will be considered and an equivalence condition for boundedness of such operator will be given. Then the norm of composition operator between the mentioned spaces will be studied and it will be shown that $\|C_\varphi\|\geq 1$ and there is no composition isometry from Cauchy transform into Dirichlet space.Keywords: Boundedness, Cauchy Transform Space, Dirichlet Space, Isometry
-
International Journal Of Nonlinear Analysis And Applications, Volume:15 Issue: 6, Jun 2024, PP 19 -30
In this paper, we characterize the boundedness and compactness of product type operators, including Stevi\'c-Sharma operator $T_{\nu_1,\nu2,\varphi}$, from weak vector valued derivative Besov space $w\mathcal{E}^p_\beta(X)$ into weak vector-valued Besov space $w\mathcal{B}^p_\beta(X)$. As an application, we obtain the boundedness and compactness characterizations of the weighted composition operator on the weak vector valued derivative Besov space.
Keywords: Derivative Besov Spaces, Weighted Composition Operator, Boundedness, Compactness -
This paper deals with a class of stochastic delay differential equations (SDDEs) of second order with multiple delays. Here, two main and novel results are proved on stochastic asymptotic stability and stochastic boundedness of solutions of the considered SDDEs. In the proofs of results, the Lyapunov-Krasovskii functional (LKF) method is used as the main tool. A comparison between our results and those are available in the literature shows that the main results of this paper have new contributions to the related ones in the current literature. Two numerical examples are given to show the applications of the given results.Keywords: SDDEs, Second order, multiple constant delays, Stability, boundedness, Ito formula, LKF
-
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 1, Jan 2023, PP 3189 -3200In this paper, we investigate the global behavior of positive solutions of the system of difference equations \begin{equation*} x_{n+1}=\alpha+ \dfrac{y^p_{n}}{y^p_{n-2}},\y_{n+1}=\alpha+ \dfrac{x^q_{n} }{x^q_{n-2}},\ n=0, 1, 2, ...\end{equation*}where parameters $\alpha, p, q \in (0, \infty)$ and the initial values $x_{i}$, $y_{i}$ are arbitrary positive numbers for $ i= -2,-1, 0$. Moreover, the rate of convergence of positive solutions is established and some numerical examples are given to demonstrate our theoretical results.Keywords: difference equation, semi-cycle, equilibrium, boundedness, Global asymptotic stability, rate of convergence
-
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 1, Jan 2023, PP 2169 -2181This paper establishes sufficient conditions to ensure the stability and boundedness of zero solution and square integrability of solutions and their derivatives to neutral-type nonlinear differential equations of fourth order by constructing Lyapunov functionals.Keywords: stability, boundedness, square integrability, Lyapunov functional, neutral fourth-order differential equations, variable delay
-
In this work, we study a data visualization problem which is classified in the field of shape-preserving interpolation. When function is known to be bounded, then it is natural to expect its interpolant to adhere boundedness. Two spline-based techniques are proposed to handle this kind of problem. The proposed methods use quadratic splines as basis and involve solving a linear programming or a mixed integer linear programming problem which gives $C^1$ interpolants. An energy minimization technique is employed to gain the optimal smooth solution. The reliability and applicability of the proposed techniques have been illustrated through examples.
Keywords: Shape preserving interpolation, Boundedness, quadratic splines, Linear programming -
Iranian Journal of Numerical Analysis and Optimization, Volume:12 Issue: 2, Summer and Autumn 2022, PP 449 -466A class of Bernstein-like basis functions, equipped with a shape param-eter, is presented. Employing the introduced basis functions, the corre-sponding curve and surface in rectangular patches are defined based on some control points. It is verified that the new curve and surface have most properties of the classical Bézier curves and surfaces. The shape parameter helps to adjust the shape of the curve and surface while the control points are fixed. We prove that the proposed Bézier-like curves can preserve monotonicity and that Bézier-like surfaces can preserve axial monotonicity. Moreover, the presented curves and surfaces preserve bound constraints implied by the original data.Keywords: Blending functions, Bézier curve, Shape adjustment, Mono-tonicity preservation, Shape-preserving, Boundedness
-
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 2, Summer-Autumn 2022, PP 1585 -1589
Let Hμ=(μn+k)n,k≥0 with entries μn,k=μn+k induces the operator Hμ(f)(z)=∑∞n=0(∑∞k=0μn,kak)zn on the space of all analytic functions f(z)=∑∞n=0anzn in the unit disk D, where μ is a positive Borel measure on the interval [0,1). In this paper, we characterize the boundedness and compactness of the operator Hμ on Zygmund type spaces.
Keywords: Boundedness, Compactness, Hilbert matrix operator, Operator, Zygmund space -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 2, Summer-Autumn 2022, PP 1131 -1141
This work deals with various qualitative analyses of solutions of a certain delay integro-differential equation (DIDE). We prove here six new theorems including sufficient conditions, on uniformly stability (US), boundedness, asymptotically stability (AS), exponentially stability (ES), integrability and instability of solutions, respectively. By defining a suitable Lyapunov function (LF) and using the Razumikhin method (RM), the proofs of the theorems are provided. We gave two examples to demonstrate applications of the established new conditions.
Keywords: DIDE, Lyapunov–Razumikhin method, stability, instability, boundedness, integrability -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 2, Summer-Autumn 2022, PP 2043 -2058
The aim of this paper is to study the dynamics of the system of two rational difference equations: xn+1=αn+yn−kyn,yn+1=αn+xn−kxn,n=0,1,… where {αn}n≥0 is a two periodic sequence of nonnegative real numbers and the initial conditions xi,yi are arbitrary positive numbers for i=−k,−k+1,−k+2,…,0 and k∈N. We investigate the boundedness character of positive solutions. In addition, we establish some sufficient conditions under which the local asymptotic stability and the global asymptotic stability are assured. Furthermore, we determine the rate of the convergence of the solutions. Some numerical are considered in order to confirm our theoretical results.
Keywords: System of difference equations, Periodic solutions, Global asymptotic stability, Boundedness -
فرض کنید خودنگاشتی تحلیلی روی قرص واحد در صفحه مختلط ، یک عدد صحیح نامنفی و تابعی تحلیلی روی باشد. در این صورت برای تابع تحلیلی روی عملگر ترکیبی مشتق پذیر وزن دار به صورت تعریف می شود که . در این مقاله، کرانداری و فشردگی از فضاهای برگمن وزن دار با وزن های پذیرفتنی به فضاهای از نوع بلاخ را بررسی می کنیم.
کلید واژگان: عملگر ترکیبی مشتق پذیر وزن دار, فضای برگمن وزن دار, فضای از نوع بلاخ, وزن پذیرفتنی, کرانداری, فشردگیFor an analytic self-map $varphi$ of the unit disk $mathbb{D}$ in the complex plane $mathbb{C}$, a nonnegative integer $n$, and $u$ analytic function on $mathbb{D}$, weighted differentiation composition operator is defined by $(D_{varphi,u}^nf) (z)=u(z)f^{(n)}(varphi(z))$, where $f$ is an analytic function on $mathbb{D}$ and $zinmathbb{D}$. In this paper, we study the boundedness and compactness of $D_{varphi,u}^n$, from weighted Bergman spaces with admissible weights to Bloch-type spaces.
Keywords: Weighted differentiation composition operator, Weighted Bergman space, Bloch-type space, Admissible weight, Boundedness, Compactness -
In this paper we study the weighted composition operator ψCφ on the Dirichlet type spaces Dp α(D). We show that if the weighted composition operator ψCφ is bounded on such spaces(for 1 p < 2) then the related measure µp,α,ψ is a Carleson measure. Also we show that if the weighted composition operator ψCφ is an isomety on Dp α(D) then ψ.φ is a rotation map on D.
Keywords: Weighted composition operator, Dirichlet type spaces, Boundedness, Carleson measure, ISometry -
در این مقاله یک طرح تفاضل متناهی دقیق از نوع صریح برای معادله هاکسلی براساس طرح تفاضل متناهی غیراستاندارد ارائه شده است. در ادامه یک طرح تفاضل متناهی غیراستاندارد برای جواب عددی معادله هاکسلی پیشنهاد و مثبت بودن، کرانداری، سازگاری،پایداری و همگرایی طرح مورد بررسی قرار گرفته شده است. به منظور نشان دادن دقت و کارایی طرح، نتایج عددی آن با جواب دقیق و برخی روش های موجود مقایسه شده است.کلید واژگان: معادله هاکسلی, طرح تفاضل متناهی غیراستاندارد, کرانداری و مثبت بودن, سازگاری, پایداری و همگراییIranian Journal of Numerical Analysis and Optimization, Volume:9 Issue: 1, Winter and Spring 2019, PP 17 -35In this paper, an explicit exact finite-difference scheme for the Huxley equation is presented based on the nonstandard finite-difference (NSFD) scheme. Afterwards, an NSFD scheme is proposed for the numerical solution of the Huxley equation. The positivity and boundedness of the scheme is discussed. It is shown through analysis that the proposed scheme is consistent, stable, and convergence. The numerical results obtained by the NSFD scheme is compared with the exact solution and some available methods, to verify the accuracy and efficiency of the NSFD scheme.Keywords: The Huxley equation, Nonstandard finite-difference scheme, Positivity, boundedness, Consistency, Stability, Convergence.
-
In this paper, an economic group delay model is established. Dynamical behavior and Basic influence number of the proposed system are studied. Asymptotic stability analysis is carried out for the steady-states. The critical value of the delay $tau$ is determined. It is observed that for the interior steady-state remains stable if the adoption delay for the low-income group is less than the threshold value, i.e., $tau<tau_{0}^+$. If $tau$ crosses its threshold, system perceives oscillating behavior, and Hopf bifurcation occurs. Moreover, sensitivity analysis is performed for the system parameter used in the interior steady-state. Finally, numerical simulations are conducted to support our analytical findings.Keywords: Boundedness, positivity, delay, Hopf bifurcation, sensitivity analysis
-
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= \beta x_n(1- x_n),\ \ n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $\beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Hukuhara difference for fuzzy numbers. Finally, some examples are given to illustrate our results.Keywords: Fuzzy difference equations, Logistic difference equation, Boundedness, Persistence, Equilibrium point
-
Abstract. In the present paper a generalized Lotka-Volterra food chain system has been studied and also its dynamic behavior such as locally asymptotic stability has been analyzed in case of existing interspecies competition. Furthermore, it has been shown that the said system is permanent (in the sense of boundedness and uniformly persistent). Finally, it is proved that the nontrivial equilibrium point of the above system is locally asymptotically stable.
Keywords: Lotka-Volterra model, boundedness, food chain -
We investigate the long-term behavior of solutions of the di erence equation xn+1 = xnxn-3 - 1; n = 0; 1; :: :; where the initial conditions x-3; x-2; x-1; x0 are real numbers. In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.
Keywords: Difference Equations, Boundedness, Periodicity, Asymptotic periodicity, Eventual periodicity, Invariant interval, Continued fractions -
We consider the bilinear Fourier integral operator S(f, g)(x) = Z Rd Z Rd ei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d, on modulation spaces. Our aim is to indicate this operator is well defined on S(Rd) and shall show the relationship between the bilinear operator and BFIO on modulation spaces.Keywords: Fourier integral operator, boundedness, modulation spaces
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.