به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « laplacian energy » در نشریات گروه « ریاضی »

تکرار جستجوی کلیدواژه «laplacian energy» در نشریات گروه «علوم پایه»
  • Reza Sharafdini *, Habibeh Panahbar
    Let $G$ be a graph with a vertex weight $omega$ and the vertices $v_1,ldots,v_n$. The Laplacian matrix of $G$ with respect to $omega$ is defined as $L_omega(G)=diag(omega(v_1),cdots,omega(v_n))-A(G)$, where $A(G)$ is the adjacency matrix of $G$. Let $mu_1,cdots,mu_n$ be eigenvalues of $L_omega(G)$. Then the Laplacian energy of $G$ with respect to $omega$ defined as $LE_omega (G)=sum_{i=1}^nbig|mu_i - overline{omega}big|$, where $overline{omega}$ is the average of $omega$, i.e., $overline{omega}=dfrac{sum_{i=1}^{n}omega(v_i)}{n}$. In this paper we consider several natural vertex weights of $G$ and obtain some inequalities between the ordinary and Laplacian energies of $G$ with corresponding vertex weights. Finally, we apply our results to the molecular graph of toroidal fullerenes (or achiral polyhex nanotorus).\[5mm] noindenttextbf{Key words:} Energy of graph, Laplacian energy, Vertex weight, Topological index, toroidal fullerenes.
    Keywords: energy of graph, Laplacian energy, Vertex weight, Topological index, toroidal fullerenes}
  • Sharife Chokani, Fateme Movahedi *, Seyyed Mostafa Taheri
    In this paper, we investigate some of the graph energies of the zero-divisor graph $\Gamma(R)$ of finite commutative rings $R$. Let $Z(R)$ be the set of zero-divisors of a commutative ring $R$ with non-zero identity and $Z^*(R)=Z(R)\setminus \{0\}$. The zero-divisor graph of $R$, denoted by $\Gamma(R)$, is a simple graph whose vertex set in $Z^*(R)$ and two vertices $u$ and $v$ are adjacent if and only if $uv=vu=0$. We investigate some energies of $\Gamma(R)$ for the commutative rings $R\simeq \mathbb{Z}_{p^2}\times \mathbb{Z}_{q}$, $R\simeq \mathbb{Z}_{p}\times \mathbb{Z}_{p}\times \mathbb{Z}_{p}$ and $R\simeq \mathbb{Z}_{p}\times \mathbb{Z}_{p}\times \mathbb{Z}_{p}\times \mathbb{Z}_{p}$ where $p, q$ the prime numbers.
    Keywords: Commutative ring, Zero-divisor graph, line graph, Minimum edge dominating energy, Laplacian energy}
  • Fateme Movahedi *, Mohammad Hadi Akhbari

    In this paper, some graph parameters of the zero-divisor graph $\Gamma(R)$ of a finite commutative ring $R$ for $R\simeq \mathbb{Z}_p \times \mathbb{Z}_{p^2}$ and $R\simeq \mathbb{Z}_p \times \mathbb{Z}_{2p}$ where $p>2$ a prime, are investigated. The graph $\Gamma(R)$ is a simple graph whose vertex set is the set of non-zero zero-divisors of a commutative ring $R$ with non-zero identity and two vertices $u$ and $v$ are adjacent if and only if $uv=vu=0$.
    In this paper, we study some of the topological indices such as graph energies, the Zagreb indices and the domination parameters of graphs $\Gamma\big(\mathbb{Z}_p \times \mathbb{Z}_{p^2} \big)$ and $\Gamma\big(\mathbb{Z}_p \times \mathbb{Z}_{2p}\big)$.

    Keywords: Zero-divisor graph, Zagreb index, minimum edge dominating energy, Laplacian energy, Domination number}
  • Sandeep Bhatnagar, Siddiqui Merajuddin, Shariefuddin Pirzada *
    Let $G$ be a simple connected graph of order $n$ and size $m$. The matrix $L(G)=D(G)-A(G)$ is the Laplacian matrix of $G$, where $D(G)$ and $A(G)$ are the degree diagonal matrix and the adjacency matrix, respectively. For the graph $G$, let $d_{1}\geq d_{2}\geq \cdots d_{n}$ be the vertex degree sequence and $\mu_{1}\geq \mu_{2}\geq \cdots \geq \mu_{n-1}>\mu_{n}=0$ be the Laplacian eigenvalues. The Laplacian resolvent energy $RL(G)$ of a graph $G$ is defined as $RL(G)=\sum\limits_{i=1}^{n}\frac{1}{n+1-\mu_{i}}$. In this paper, we obtain an upper bound for the Laplacian resolvent energy $RL(G)$ in terms of the order, size and the algebraic connectivity of the graph. Further, we establish relations between the Laplacian resolvent energy $RL(G)$ with each of the Laplacian-energy-Like invariant $LEL$, the Kirchhoff index $Kf$ and the Laplacian energy $LE$ of the graph.
    Keywords: Laplacian resolvent energy, Laplacian energy, Laplacian-energy-like invariant, Kirchhoff index}
  • حمیده آرام*، رعنا خوئیلر، نسرین ده گردی

    فرض کنید  گرافی از مرتبه  و اندازه  باشد. اگر  مقادیر ویژه ماتریس لاپلاسین باشند، آن گاه انرژی لاپلاسین گراف  به صورت معرفی می شود. در این مقاله بررسی انرژی لاپلاسین در گراف ها را ادامه می دهیم و کران های جدیدی برای انرژی لاپلاسین در گراف ها به دست می آوریم.

    کلید واژگان: ماتریس لاپلاسین, مقادیر ویژه ماتریس لاپلاسین, انرژی لاپلاسین}
    Hamideh Aram*, R. Khoeelar, Nasrin Dehgardi
  • P. Dutta, R. K. Nath *
    ‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..
    Keywords: Non-commuting graph, L-spectrum, Laplacian energy, finite group}
  • Nilanjan De *
    The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini and Panahbar [R. Sharafdini, H. Panahbar, Vertex weighted Laplacian graph energy and other topological indices. J. Math. Nanosci. 2016, 6, 57-65], in this paper we investigate the eccentricity version of Laplacian energy of a graph G.
    Keywords: Eccentricity, Eigenvalue, energy (of graph), Laplacian energy, topological index}
  • Shariefuddin Pirzada, Hilal A. Ganie
    For a simple connected graph G with n -vertices having Laplacian eigenvalues μ 1, μ 2, …, μ n−1, μ n =0, and signless Laplacian eigenvalues q 1, q 2, …, q n, the Laplacian-energy-like invariant(LEL) and the incidence energy (IE) of a graph G are respectively defined as LEL(G)=∑ n−1 i=1 μ i − − √ and IE(G)=∑ n i=1 q i √. In this paper, we obtain some sharp lower and upper bounds for the Laplacian-energy-like invariant and incidence energy of a graph.
    Keywords: Spectra of graph, energy of graph, Laplacian energy, incidence energy}
  • Qingqiong Cai, Xueliang Li, Jiangli Song
    For a simple digraph $G$ of order $n$ with vertex set ${v_1,v_2,ldots, v_n}$, let $d_i^+$ and $d_i^-$ denote the out-degree and in-degree of a vertex $v_i$ in $G$, respectively. Let $D^+(G)=diag(d_1^+,d_2^+,ldots,d_n^+)$ and $D^-(G)=diag(d_1^-,d_2^-,ldots,d_n^-)$. In this paper we introduce $widetilde{SL}(G)=widetilde{D}(G)-S(G)$ to be a new kind of skew Laplacian matrix of $G$, where $widetilde{D}(G)=D^+(G)-D^-(G)$ and $S(G)$ is the skew-adjacency matrix of $G$, and from which we define the skew Laplacian energy $SLE(G)$ of $G$ as the sum of the norms of all the eigenvalues of $widetilde{SL}(G)$. Some lower and upper bounds of the new skew Laplacian energy are derived and the digraphs attaining these bounds are also determined.
    Keywords: energy, Laplacian energy, skew energy, skew Laplacian energy, eigenvalues}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال