جستجوی مقالات مرتبط با کلیدواژه "antioxidative system" در نشریات گروه "زیست شناسی"
تکرار جستجوی کلیدواژه «antioxidative system» در نشریات گروه «علوم پایه»-
Application of strategies inducing a heavy metal tolerant turfgrass is necessary for cultivation management. Water and soil contamination with heavy metals is an increasing concern for the human and environment health. This study was conducted to evaluate the mitigation of environmental Cd toxicity through landscape turfgrasses as affected by two arbuscular mycorrhizal fungi (AMF) species and to monitor some physiological and biochemical properties of the plants in various Cd concentrations. Plants were inoculated with Rhizophagus intraradices and Glomus mosseae and without AMF, with the addition of different Cd concentration (0, 200, and 300 µg/L). AMF could colonize with the roots of turfgrasses in order as follows: Agropyron elongatum > Festuca aurandinace > F. ovina > Lolium perenne. The highest AMF colonization (~70%), Cd concentration in shoot (250 mg/Kg dry weight) and aerial and underground biomass (about 3 and 1.2 g/pot, respectively) as well as growth rate were displayed in Agropyron elongatum when inoculated with G. mosseae under 200 µg/L Cd solution. Both AMF species reduced H2O2 production and lipid peroxidation and enhanced catalase, peroxidase and superoxide dismutase activity. Lolium perenne accumulated higher Cd in its roots as compared to the other turfgrasses under non-AMF. Although A. elongatum and Festuca aurandinace had a translocation factor (TF)>1, they could produce considerable biomass and grow well through AMF inoculation. It is suggested that the two latter species could be used under highly Cd-contaminated soil/water if AMF is prepared.
Keywords: Antioxidative system, Heavy metal, Mycorrhizal colonization, Phytotoxicity, Turfgrass -
In order to evaluate the effects of seed priming with salicylic acid (SA) (0, 2, 10, and 20 mM) to increase salt tolerance (0, 50, 100, 150, and 200 mM NaCl) in medicinal plant Dracocephalum moldavica at seed germination, an experiment was conducted as factorial in a completely randomized design with four replicates. The assessed parameters included germination percentage and rate, length, dry weight, lipid peroxidation, electrolyte leakage, and the activity of catalase, ascorbate peroxidase, and guaiacol peroxidase of the seedlings. Results revealed the values of germination indices significantly decreased with increasing salinity levels. Nevertheless, seed priming with SA (2 mM) significantly mitigated the adverse effects of salinity in D. moldavica. Under salinity and at this level of SA priming, seed germination percentage increased by 24% and 75% at 100 and 150 mM compared to exclusive salt stress. Also, germination rate augmented by SA priming up to 9.2% at 100 mM and 2 folds at 150 mM NaCl. The values of weight (+ 9.1% at 100 mM and +8 folds at 150 mM) and length (+12.5% at 100 mM and + 15.1% at 150 mM NaCl) of seedlings significantlyincreased by SA priming compared to the exclusively salt-stressed ones. SA priming increased antioxidant enzymes activities while it decreased the level of lipid peroxidation and ion leakage in the seedlings of D. moldavica. As a conclusion, SA improved seed performance in D. moldavica under salt stress by reduction of detrimental effects of oxidative stress.
Keywords: antioxidative system, hormonal priming, Moldavian balm, Oxidative stress, seed priming
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.