به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "black-eyed pea" در نشریات گروه "زیست شناسی"

تکرار جستجوی کلیدواژه «black-eyed pea» در نشریات گروه «علوم پایه»
جستجوی black-eyed pea در مقالات مجلات علمی
  • سعید آقاعزیزی*، محمدحسین کیانمهر، امیر شایعی، محمدعلی کیهان دوست

    جداسازی یک عضو غیرقابل انکار در فرآیند پس از برداشت محصولات فله ای است. دستگاه جداکننده میز وزنی (GTSM) یکی از دستگاه هایی است که برای جداسازی ناخالصی های موجود در توده های دانه استفاده می شود. با توجه به تعداد پارامترهای قابل تغییر در GTSM و تاثیربالای این عوامل بر میزان SP ناخالصی ها در توده لوبیا چشم بلبلی و با توجه به اینکه بررسی تمام مقادیر در این مورد تقریبا غیرممکن به نظر می رسد. استفاده از یادگیری ماشین (ML) برای پیش بینی فرآیند SP در برابر تغییرات اعمال شده در این عوامل، استفاده از GTSM برای نخود سیاه چشم (BeP) را تسهیل می کند. مطالعه حاضر در مورد پیش بینی عملکرد یک GTSM در جداسازی BeP است. متغیرهای وابسته شامل دانه های تمیز شده (Y1)، وزن دانه های تمیز شده (Y2)، تعداد ناخالص کل (Y3)، وزن ناخالص کل (Y4)، تعداد دانه های پوسیده (Y5)، وزن دانه های پوسیده (Y6)، دانه های شکسته شده بودند. تعداد (Y7) و وزن دانه شکسته (Y8) و متغیرهای مستقل شامل شیب های عرضی جدول (X1)، شیب های طولی جدول (X2)، فرکانس نوسان میز (X3) و سرعت هوای دمنده (X4) می باشد. روش های مورد استفاده جنگل تصادفی منفرد (RF) و جنگل تصادفی ترکیبی با الگوریتم ژنتیک (RF-GA) برای بهینه سازی پارامترهای RF بودند. نتایج با استفاده از ضریب همبستگی (CC)، شاخص پراکنده (SI) و شاخص ویلموت (WI) مورد ارزیابی قرار گرفت. با توجه به یافته ها، روش ترکیبی عملکرد بالاتری نسبت به روش تک ارایه کرد و عملکرد پیش بینی را با موفقیت افزایش داد.

    کلید واژگان: لوبیای چشم بلبلی, یادگیری ماشین, جداسازی, میز وزنی
    Saeed Agaazizi *, Mohammadhosain Kianmehr, Amir Shayei, Mohammadali Keyhandoust

    Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.Separation (SP) is an undeniable member in the process set after harvesting of bulk products. The gravity tableseparator machine (GTSM) is one of the devices used to separate modal impurities in grain masses. Due to the continuity in the range of changes in the parameters of the GTSM and the high number of these factors affecting the rate of SP of impurities in the mass of cowpea beans, and considering that it seems almost impossible to examine all the values in this range. The use of machine learning (ML) to predict the process of SP against the changes applied to these factors facilitates the use of the GTSM for black-eyed pea (BeP). The present study is about predicting the performance of a GTSM in separating the BeP. The dependent variables included the cleaned seeds (Y1), weight of the cleaned seeds (Y2), total gross number (Y3), total gross weight (Y4), rotten seeds number (Y5), rotten seeds weight (Y6), broken seeds number (Y7) and broken seeds weight (Y8) and the independent variables included transverse slopes of the table (X1), longitudinal slopes of the table (X2), frequencies of table oscillation (X3) and blower air speeds (X4). The employed methods were single Random forest (RF) and a hybrid Random forest integrated by Genetic algorithm (RF-GA) for optimization of RF parameters. Results were evaluated using correlation coefficient (CC), Scattered Index (SI) and Willmott’s Index (WI). According to findings, hybrid method provided higher performance compared with that for the single method and increased the prediction performance, successfully.

    Keywords: Black-eyed pea, Machine Learning, Separation, gravity table
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال