جستجوی مقالات مرتبط با کلیدواژه "رسوب دهی الکتروشیمیایی" در نشریات گروه "شیمی"
تکرار جستجوی کلیدواژه «رسوب دهی الکتروشیمیایی» در نشریات گروه «علوم پایه»-
تولید الکتروشیمیایی هیدروژن با استفاده از کاتالیزگرهایی با کارآیی بالا از راهکار های موثر برای دستیابی به یک منبع انرژی پاک و تجدید پذیر است. پالادیوم به عنوان یکی از بهترین عناصر به عنوان کاتالیزگر دارای قیمت بسیار بالایی می باشد. در مطالعه ی حاضر با استفاده از فلز نقره میزان مصرف پالادیوم را کاهش داده و کارایی آن بهبود داده شده است. در این تحقیق پوشش Pd-Ag با استفاده از روش رسوب دهی الکتروشیمیایی ولتامتری چرخه ای در حمام رسوب دهی حاوی یون پالادیوم و نقره بر سطح میله ی گرافیتی ایجاد شد و فاکتورهایی از جمله روش نشانش پوشش، نسبت غلظت دو نمک، تعداد چرخه و سرعت روبش بهینه گردید. آزمون های مختلف الکتروشیمیایی جهت سنجش فعالیت و پایداری کاتالیزگری نمونه ها در الکترولیت یک دهم مولار سولفوریک اسید انجام شدند. به منظور مطالعه ی مشخصات سطحی پوشش های ایجاد شده، از آزمون میکروسکوپ الکترونی گسیل میدانی (FESEM) مجهز به طیف سنج پراش انرژی پرتوی ایکس (EDS) و آزمون های پراش پرتو ایکس (XRD) استفاده شد. در حالت بهینه اضافه ولتاژ در شار جریان 10- میلی آمپر بر سانتی متر مربع برابر با 5/177- میلی ولت و شیب تافلی آن برابر با (mV.dec-1) 9/120 می باشد که یکی از بهترین فعالیت های کاتالیزگری را نسبت به سایر پوشش ها بر پایه نقره و پالادیوم از خود نشان می دهد. از دلایل فعالیت بالای کاتالیزگری نمونه ی بهینه می توان به هم افزایی اتم های نقره و پالادیوم، ساختار نانو خوشه ای ایجاد شده و مساحت سطح فعال الکتروشیمیایی بالا اشاره کرد. تغییر بسیار کم اضافه پتانسیل الکترود بهینه تحت چگالی 100- میلی آمپر بر سانتی متر مربع به مدت 5 ساعت الکترولیز، نشان از پایداری الکترود بهینه در شرایط کاری و محیط اسیدی می باشد. روش ساخت کم هزینه، تک مرحله ای و بدون استفاده از هیچ گونه چسب و اتصال دهنده و فعالیت کاتالیزگری بسیار بالا و پایداری خوب نمونه ی بهینه Pd-Ag، امکان استفاده تجاری این الکترود را میسر می سازد.
کلید واژگان: رسوب دهی الکتروشیمیایی, الکتروکاتالیزگر, نقره-پالادیوم, واکنش تولید هیدروژنElectrochemical production of hydrogen using high-efficiency catalysts is an effective way to achieve a clean and renewable energy source. Palladium as one of the best elements as a catalyst has a very high price. In the present study, the use of silver metal reduced the consumption of palladium and improved its efficiency. In this research, Pd-Ag coating was generated using the cyclic voltametric electrochemical deposition method in a deposition bath containing palladium and silver ions on the surface of graphite rods. Factors such as coating marking method, the concentration of two salts, number of cycles, and scanning speed were optimized. Various electrochemical tests were performed to measure the activity and catalytic stability of the samples in one-tenth of a molar sulfuric acid electrolyte. To study the surface characteristics of the coatings, field emission electron microscopy (FESEM) test equipped with X-ray energy diffraction (EDS) spectrometer and X-ray diffraction (XRD) tests were used. In the optimal case, the overvoltage in the current flux of -10 mA / cm2 is equal to -177.5 mV and its TOEFL slope is equal to (mV.dec-1) 120.9, which is one of the best catalytic activities. Compared to other coatings based on silver and palladium. The reasons for the high catalytic activity of the optimal sample include the synergy of silver and palladium atoms, the resulting nanocluster structure, and the high electrochemically active surface area. A very small change in the optimal potential of the electrode at a density of -100 mA / cm2 for 5 hours of electrolysis indicates the stability of the optimal electrode in working conditions and an acidic environment. The low-cost, single-step fabrication method without the use of any adhesives or binders and the very high catalyst activity and good stability of the optimal Pd-Ag sample make it possible to use this electrode commercially.
Keywords: Electrochemical Precipitation, Electrocatalyst, Silver-Palladium, Hydrogen production reaction -
پوشش های کبالت به دلیل خواص مطلوب و سازگاری با محیط زیست به عنوان جایگزین مناسبی برای پوشش های کروم در نظر گرفته می شوند. در پژوهش حاضر با اضافه نمودن فسفر به عنوان عنصر آلیاژی و نانو ذرات تقویت کننده ZrO2 و CeO2 به زمینه پوشش کبالت، پوشش های آمورف Co-P-ZrO2-CeO2 و Co-P به روش رسوب دهی الکتروشیمیایی بر زیرلایه فولاد 37 ST ایجاد شده است. تاثیر چگالی جریان بر مورفولوژی پوشش ها توسط میکروسکوپ الکترونی روبشی (SEM)، درصد وزنی عناصر موجود در پوشش ها توسط آنالیز EDS و همچنین اثر آن بر ریزسختی و مقاومت به خوردگی بررسی شد. افزودن نانو ذرات تقویت کننده به زمینه آلیاژی کبالت-فسفر موجب افزایش ریزسختی پوشش های نانوکامپوزیتی شده است. لازم به ذکر است افزایش چگالی جریان تا مقدار بهینه سبب افزایش سختی و سپس کاهش آن می شود. همچنین نتایج آزمون پلاریزاسیون تافل و امپدانس بر پوشش نانوکامپوزیتی نشان دهنده افزایش مقاومت به خوردگی با افزایش چگالی جریان تا mA/cm2 100 برای هردو نمونه آلیاژی و نانو کامپوزیتی می شود که به علت افزایش درصد وزنی فسفر و تشکیل لایه محافظ سطحی می باشد. علاوه بر فسفر، وجود نانو ذرات تقویت کننده در زمینه باعث جلوگیری از رسیدن محلول خورنده به زمینه پوشش و افزایش مقاومت به خوردگی آن می گردد.
کلید واژگان: رسوب دهی الکتروشیمیایی, پوشش نانوکامپوزیتی, چگالی جریان, ریزسختی, مقاومت به خوردگیCobalt coatings are considered a suitable alternative to chromium coatings due to their desirable properties and environmental compatibility. In this study, by adding phosphorus as an alloying element and reinforcing nanoparticles of ZrO2 and CeO2 to the cobalt coating matrix, amorphous Co-P-ZrO2-CeO2 and Co-P coatings were produced on a ST37 steel substrate using electrochemical deposition. The effect of current density on the morphology of the coatings was investigated by scanning electron microscopy (SEM), and the weight percentages of elements present in the coatings were analyzed using EDS analysis. Microhardness and corrosion resistance were also examined. The addition of reinforcing nanoparticles to the cobalt-phosphorus alloy matrix increased the hardness of the nanocomposite coatings. It should be noted that increasing the current density up to an optimal level increases the hardness, and then decreases it. The results of the Tafel and EIS analyses on the nanocomposite coatings indicate an increase in corrosion resistance with an enhancement in current density up to 100 mA/cm2 for both alloy and nanocomposite samples, which is due to an increase in the weight percentage of phosphorus and the formation of a surface protective layer. In addition, the presence of reinforcing nanoparticles in the matrix prevents corrosive medium from reaching the coating surface, improving its corrosion resistance.
Keywords: Electrochemical deposition, Nanocomposite Coating, Current Density, Microhardness, Corrosion Resistance
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.