به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « hydrogen storage » در نشریات گروه « شیمی »

تکرار جستجوی کلیدواژه «hydrogen storage» در نشریات گروه «علوم پایه»
  • R. Naresh Muthu *

    In this present research, reduced graphene oxide (RGO) and hexagonal boron nitride (h-BN) nanoparticles decorated RGO sheets for a solid-state hydrogen storage medium are synthesized and characterized. The nanocomposite of RGO/h-BN was prepared using the ultrasonic-assisted liquid-phase exfoliation approach and the modified Hummer's method for graphene oxide (GO) synthesis. Using micro-Raman spectroscopy, XRD, SEM, CHNS elemental analysis, and TGA, the produced RGO and RGO/h-BN nanocomposite were evaluated. XRD and micro-Raman validate the RGO and the RGO decorated with h-BN nanoparticles. SEM analysis authorizes the h-BN nanoparticles to be decorated on the surface of the RGO sheet. Using a hydrogenation system akin to Sievert's, the hydrogen adsorption behavior of RGO and RGO/h-BN nanocomposite was investigated. With a maximal hydrogen absorption of 2.1 wt% at 100°C, RGO/h-BN nanocomposite performs better than bare RGO. In the temperature ranges of 109 to 140° and 115 to 149°, the RGO and RGO/h-BN nanocomposites released 100% stored hydrogen. The corresponding binding energy of RGO and RGO/h-BN nanocomposites were 0.31 and 0.32 eV, which is adequate for fuel cell applications. The RGO/h-BN nanocomposite is therefore anticipated to have a promising future in hydrogen storage situations of fuel cell applications.

    Keywords: h-BN (hexagonal boron nitride), RGO (reduced graphene oxide), RGO, h-BN nanocomposite, Hydrogen storage}
  • امیرحسین ریحانی، مهدی موسوی کمازانی*

    در این مطالعه، نانوساختارهای SiO2، CeO2/SiO2، ZnO/SiO2 و ZnO/CeO2/SiO2 با روش سل- ژل به دو شکل با استفاده از پیش ماده های تترااتیل اورتوسیلیکات (TEOS)، سریم نیترات و روی نیترات سنتز شدند. در روش اول، نمک ها پس از اضافه شدن TEOS و در روش دوم پیش از اضافه شدن TEOS اضافه شدند. با تفاوت در ترتیب اضافه شدن مواد، پراکندگی مواد در کامپوزیت ها و اندازه ی ذرات تغییر محسوسی داشتند. بهترین شرایط از نظر ترکیب مواد و اندازه ی ذرات برای نانوکامپوزیت ZnO/CeO2/SiO2 سنتز شده به روش دوم بود. آنالیز های EDS، XRD، FT-IR، FESEM و BET برای نمونه ها جهت صحت تشکیل نانوساختار مورد انتظار انجام شد. در نهایت، نانوکامپوزیت ZnO/CeO2/SiO2 سنتز شده به روش دوم برای تعیین ظرفیت ذخیره سازی الکتروشیمیایی هیدروژن مورد ارزیابی قرار گرفت. با روش کرونوپتانسیومتری ظرفیت ذخیره سازی هیدروژن آن mAh/g 75/708 به ثبت رسید که نسبت به ظرفیت های گزارش شده مقدار قابل توجهی است. مقایسه ی این عدد با میزان ظرفیت ذخیره سازی نانوساختار های سیلیکا و سریا نیز نشان دهنده ی تاثیر سازنده ی این مواد بر روی هم است. مطابق با نتایج، روش دوم سنتز روشی مناسب تر برای ساخت این نانومواد جهت ذخیره سازی الکتروشیمیایی هیدروژن می باشد.

    کلید واژگان: نانوساختار, سل- ژل, روی, سریا, سیلیکا, ذخیره سازی هیدروژن, کرونوپتانسیومتری}
    Mehdi Mousavi-Kamazani *, AmirHossein Reihani

    In this study, SiO2, CeO2/SiO2, ZnO/SiO2, and ZnO/CeO2/SiO2 nanostructures were synthesized by sol-gel method in two ways using TEOS, cerium nitrate, and zinc nitrate as precursors. In the first method, salts were added at the end, but in the second method, TEOS was added at the end. With the difference in the order of adding materials, the distribution of materials in the composites and the size of the particles changed significantly. The best conditions in terms of material composition and particle size were for the ZnO/CeO2/SiO2 nanocomposite synthesized by the second method. EDS, FT-IR, FESEM, BET, and XRD analyzes were performed for the samples to confirm the formation of the expected nanostructure. Finally, the ZnO/CeO2/SiO2 nanocomposite synthesized by the second method was evaluated to determine the electrochemical hydrogen storage capacity. With the chronopotentiometric method, its hydrogen storage capacity was recorded as 708.75 mAh/g, which is a significant amount compared to the reported capacities. The comparison of this number with the storage capacity of silica and ceria nanostructures also shows the constructive effect of these materials on each other. According to the results, the second synthesis method is a more suitable method for making these nanomaterials for electrochemical hydrogen storage.

    Keywords: nanostructure, Sol-gel, Zinc, Ceria, Silica, Hydrogen storage, Chronopotentiometry}
  • هانیه برقی جهرمی، ماشاالله رحمانی، محمدصالح برقی جهرمی

    هیدروژن این پتانسیل را دارد که یک منبع انرژی پاک امیدوارکننده برای جایگزینی سوخت های فسیلی تجدیدناپذیر باشد. ناتوانی در ذخیره سازی موثر هیدروژن و نگرانی های ایمنی آن چیزی است که از استفاده از آن به عنوان سوخت جایگزین جلوگیری می-کند. سیستم های جذب هیدروژن فعلی، مانند ذخیره سازی کوچک و مایع، برای استفاده در کاربردهای عملی بسیار گران هستند. چارچوب های آلی فلزی (MOFs) مواد کریستالی با سطح وسیع، تخلخل بالا و جذب هیدروژن عالی هستند. جذب فیزیولوژیکی هیدروژن در MOF ها توسط یک جاذبه واندروالسی ضعیف انجام می شود که به راحتی با مقدار مناسب گرما یا فشار قابل برگشت است. نحوه بهبود سطح و همچنین توانایی MOFها برای جذب هیدروژن مورد بررسی قرار گرفته است. مکانیسم سرریز هیدروژن نشان داده شده است که ذخیره سازی با چگالی بالا را در مقایسه با سایر سیستم ها ارایه می دهد. به منظور تبدیل هیدروژن ذخیره شده به انرژی، MOF ها می توانند به عنوان غشاهای تبادل پروتون و الکترودهای سلول های سوختی مورد استفاده قرارگیرند. از آنجایی که MOF ها رسانایی پایینی دارند، ناخالص سازی امکان استفاده از آن ها را در سلول های سوختی فراهم می کند. بنابراین، با تبدیل کربن به سلول های سوختی، این فناوری سازگار با محیط زیست می تواند به کاهش کربن در محیط های صنعتی کمک کند. علاوه بر این، ظرفیت هیدروژن برای جذب به عنوان سوخت برای خودروهای هیدروژنی باید در محدوده (100 بار یا کمتر) باشد. روش های اولیه ای که می توانند ذخیره سازی هیدروژن را برای استفاده از هیدروژن به عنوان سوخت بهبود بخشند، همراه با امکان پیشرفت بیشتر برای برآوردن نیازهای انرژی در آینده، در این مطالعه پوشش داده شده است.

    کلید واژگان: پارامتر های موثر بر ذخیره سازی, چارچوب های فلز-آلی, ذخیره سازی هیدروژن, مکانیسم, هیدروژن}
    Haniyeh barghi jahromi, Mashaallah Rahmani, mohammadsaleh barghi jahromi

    Hydrogen has the potential to be a promising clean energy source to replace non-renewable fossil fuels. The inability to store hydrogen effectively and safety concerns are what prevent it from being used as a substitute fuel. Current hydrogen capture systems, such as small and liquid storage, are too expensive for use in practical applications. Metal-organic frameworks (MOFs) are crystalline substances with a huge surface area, a high porosity, and excellent hydrogen absorption. The physiological adsorption of hydrogen in MOFs is brought on by a weak van der Waals attractive attraction, which is easily reversible with the right amount of heat or pressure. It has been looked at how to improve the surface area, as well as the ability of MOFs to absorb hydrogen.The hydrogen overflow mechanism has been shown to offer high-density storage in comparison to other systems. In order to turn hydrogen that has been stored into energy, MOFs can be utilized as proton exchange membranes and electrodes for fuel cells. Because MOFs have a low conductivity, doping allows for their use in fuel cells. Thus, by converting carbon into fuel cells, this eco-friendly technology can aid in reducing carbon in industrial settings. Additionally, the capacity of hydrogen to be absorbed as a fuel for hydrogen cars must fall within the range (100 bar or less). The primary methods that could improve hydrogen storage for using hydrogen as a fuel were covered in this study, along with the possibility for further advancement to satisfy future energy demands.

    Keywords: parameters affecting storage, metal-organic frameworks, hydrogen storage, mechanism, hydrogen}
  • Hashem Tavakoli Moghadam, Mohsen Oftadeh *, Nasrin Sohrabi, Mohammad Azami
    Various nanostructures have been widely investigated as alternative materials for hydrogen storage using experimental and computational techniques. Combination of boron fullerenes with metals such as magnesium can be used as hydrogen storage materials. In this research, the electronic properties and topology of magnesium-doped boron fullerenes and their interaction with H2 for hydrogen storage are investigated using density functional theory. By density functional calculations with B3LYP/6-31G//M062X/6-31G** method, the structures of B80, Mg12B80, Mg20B80 and Mg30B80 were optimized and the total energy of each of them are calculated. The charge transfer from Mg to B atoms creates an electric field around Mg atoms with a positive charge. When hydrogen molecules approach the system, the hydrogen molecules become polarized and they are adsorbed to these boron fullerenes doped with Mg atoms. Adding one hydrogen molecule to the B80, Mg12B80, Mg20B80 and Mg30B80 structures, adsorption energies, electronic properties and some molecular descriptors were calculated. The results showed that Mg12B80 has the lowest gap energy (ΔEH-L), the lowest hardness (ƞ), and the highest adsorption energy, which indicates the reactivity and the hydrogen storage ability of this structure is higher than B80, Mg20B80 and Mg30B80.
    Keywords: Boron fullerenes, Electronic properties, Hydrogen storage, Molecular Descriptors}
  • Mahlasadat Mousavian, Reza Keshavarzi *
    Due to the increase in fuel consumption in the world and the creation of a lot of pollution by fossil fuels, hydrogen has received much attention as a clean fuel. Extensive studies have been conducted on hydrogen production from small-scale to large-scale. Moreover, many studies have been done on the storage of this valuable gas. In this review, various methods of hydrogen production, especially the photoelectrochemical method, have been investigated on a laboratory and industrial scale, and references have been made to hydrogen storage.
    Keywords: Hydrogen production, Hydrogen storage, Industry}
  • Niket Powar, Rajkumar Pandav *
    Energy problem is one of the serious concerns in modern society; therefore, we have to take hastily an effective action. Hence, researchers are looking for some attractive materials with low-cost, lightweight, and environmentally effective. Recently, 2D materials have taken notable recognition in the field of materials science for multiple energy application, because of its unique electronic and optical properties; and borophene is one of the 2D material which is commendatories than graphene. However, it has not much experimentally explored yet. This review discusses the synthesis process of borophene and discussed energy-related application such as energy storage, optoelectronic, photocatalytic activity, and hydrogen storage. Moreover, this work provides a summary of each application that could help to understand the importance of borophene materials for energy applications.
    Keywords: Borophene, Energy Storage, Optoelectronic, Hydrogen storage, Photocatalytic activity}
  • Marjan A. Rafiee *

    Nuclear quadrupole resonance (NQR) spectroscopy is an accurate method for determination of electric charge distribution around quadrupolar nuclei. Using ab initio computational methods, it is possible to calculate the Nuclear Quadrupole Coupling Constants (NQCCs) with high accuracy and obtain the useful structural information by using these parameters. Sodium Borohydride, NaBH4, is a metal hydride complex which is a good candidate for being applied in fuel cells as hydrogen storage material with high capacity of 10.6 wt %. Despite the high capacity of hydrogen storage, hydrogen desorption occurs at high temperatures due to high stability and strong bonds of this compound. This problem limits the practical usage of NaBH4 in fuel cells. One way to overcome this problem is applying the high-pressure techniques and using the pressure-induced NaBH4 structures. Under ambient conditions, NaBH4 has a cubic structure (α-NaBH4) that can be converted to β- and γ-NaBH4 by increasing the pressure. In the present research, charge distribution of α-NaBH4 nanocrystal has been compared to that of high-pressure structures using calculated NQCCs, to study the effect of pressure on different NaBH4 structures and hydrogen desorption ability of them. Our results show the smaller value of 2H–NQCCs and higher value of 11B-NQCCs for β-NaBH4 respect to other structures. In other words, the B-H bond is weaker in β-NaBH4 and it is expected that dehydrogenation occur more feasible and at lower temperature in β-phase compared to other phases. NBO results are in agreement with Calculated NQCCs. Calculations performed using Gaussian 09 program in B3LYP/6-311G*.

    Keywords: Nuclear quadrupole resonance (NQR), Sodium borohydride (NaBH4), Hydrogen storage, Ab initio calculations}
  • Navid Hosseinabadi *
    Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium alanate), while thermal behavior alters from one step dissociation at ~150 úC with ~ 8.1 wt% hydrogen release in alane to the two steps hydrogen releases in magnesium alanate at 130 and 285 úC with 7 and 2.1 wt% changes, and to the three steps hydrogen releases in calcium alanate at 127, 260, and 328 úC with 1.7, 2.1, and 4 wt% changes were indicated. Residual phases after dissociation are formed in aluminum and magnesium alloying systems and intermetallic phases like Mg2Al3 and Mg17Al12 with no sign of oxide formation and pure aluminum, Al4Ca, Al2Ca intermetallic phases and Ca in aluminum: Calcium system.
    Keywords: Alanates, Alkaline earth metals, Fuel processing, Hydrogen storage, Metal hydrides}
  • HeydarAli Shafiei Gol, Mehdi Noura

    The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a single H2 molecule is absorbed by a Na decorated BNNT, electrostatic field around Na atom and consequently charge of the participating atoms in the interaction region also undergo change. According to Mulliken population and partial density of state (PDOS) analyses, it is observed that positive charge carried by Na atom decreases.Another result of this charge transfer is revealed as an increase in the magnitude of the dipole moment of BNNT-Na-1H2 with respect to BNNT-Na. The results of charge density, separation distance of atoms in adsorption region as well as the H2 binding energy show the hydrogen molecule adsorption is a physical adsorption (physisorption). In the adsorption process, a single sodium atom with losing about 0.4e of its net charge can adsorb up to six H2 molecules with the binding energy of -0.35 and -0.32 eV/ H2 molecule on (5,0) and (3,3) BNNTs respectively. A comparison of the H2 binding energy of two nanotubes implies that the (5,0) BNNT-Na is more favorable for the hydrogen molecule adsorption.

    Keywords: Density functional theory, BNNT, Partial charge density, Charge transfer, Dipole moment, Hydrogen storage}
  • Masoud Darvish Ganji, Nasim Ahmadian

    Hydrogen storage capacity of Si-coated B80 fullerene was investigated based on density functional theory calculations within local density approximation and generalized gradient approximation. It is found that Si atom prefer to be attached above the center of pentagon with a binding energy of -5.78 eV. It is inferred that this binding is due to the charge transfer between the Si atom and B80 cage, such as B80AM, B80Ca and B80Mg complexes. The media produced by 12 Si atoms coating on B80, i.e. Si12B80, which Si atoms do not cluster on the B80 surface, can store up to 96 hydrogen molecules resulting in the gravimetric density of 13.87 wt %. Binding of 96 H2 molecules adsorbed on Si12B80 is found to be -0.03 eV/H2 based on the first-principles van der Waals density functional calculations being an indication of the weak interaction (physisorption) between H2 molecules and B80. Furthermore, the adsorption behavior of 96 H2 molecules around the Si12B80 complex was studied through ab initio molecular dynamics simulation at room temperature. Our finding shows that hydrogen molecules escape from the cage, which highlights that the corresponding system easily releases the hydrogen molecules at ambient conditions.

    Keywords: Adsorption, Hydrogen storage, MD simulation, B80 fullerene, DFT}
  • الناز عیسی پور، سید مجید هاشمیان زاده، سپیده کتابی
    ظرفیت ذخیره هیدروژن توسط گرافن نقص دار به روش نظریه تابعیت چگالی بررسی شد. جذب هیدروژن مولکولی بر روی یک گرافن نقص دار V2(5-8-5) و نیز بر روی گرافن نقص دار دوپه شده باLi انجام شد. مولکولهای هیدروژن بر روی گرافن نقص دار با انرژی های پیوندحدودmeV48-24بطور فیزیکی جذب میشوند. در حالی که در گرافن نقص دار دوپه شده باLi انرژی های پیوند بهmeV152-150افزایش می یابد. آنالیزدانسیته بار نشان میدهد که علت این افزایش در انرژی پیوند، انتقال بار از اتم H2 به Li است. نتایج حاصله، بهبود ظرفیت ذخیره هیدروژن را که در برخی آزمایشات جذب هیدروژن روی گرافن نقص دار مشاهده شده است، توجیه میکند.
    کلید واژگان: ذخیره هیدروژن, گرافن نقص دار, نظریه تابعیت چگالی, جذب سطحی}
    Elnaz Eisapour, Seyed Majid Hashemianzadeh, Sepideh Ketabi
    Hydrogen storage capacity of defected graphene was studied by first-principles theory based on Density-functional calculations. Adsorption of molecular hydrogen on a defected graphene V2(5-8-5) and lithium doped defected graphene V2(5-8-5) was carried out. Hydrogen molecules are physisorbed on defected graphene V2(5-8-5) with binding energy about 21–48 meV. Whereas the binding energies increase up to 150–152 meV in Li doped defected graphene. Charge-density analysis indicated that the increasing of binding energy is due to the charge transfer from the H2 molecule to Li . The results explain the enhancement of storage capacity observed in some experimental hydrogen adsorption on defected graphene qualitatively.
    Keywords: Hydrogen storage, defected graphene, Density Functional Theory, adsorption}
  • منصور انبیاء، مجتبی فریادرس، علی غفاری نژاد
    در طی دهه گذشته شبکه های آلی فلزی به طور گسترده ای به عنوان گزینه های جدیدی برای ذخیره سازی هیدروژن مورد استفاده قرار گرفته اند. مساحت سطح بالا و حفرات منظم این مواد را گزینه های مناسبی برای ذخیره سازی هیدروژن مطرح کرده است. در اینجا یون های سدیم به روش همزمانی وارد حفرات شبکه آلی فلزی MOF-199(Cu3(BTC)2) شده و جذب هیدروژن آن در دمای محیط اندازه گرفته شده است. شبکه آلی فلزی Na.Cu3(BTC)2با استفاده از تکنیک های مختلف FT-IR، XRD، SEM، BET، TG شناسایی شده است. بررسی ها نشان داد که پس از وارد کردن یون های سدیم به ساختار شبکه آلی فلزی ساختار اولیه تغییر نکرده است و نیز مساحت سطح آن از m2/g1300 به m2/g 1434 و میزان جذب هیدروژن ازwt% 1 به wt% 4 ر1 به میزان 40 درصد افزایش می یابد. علت افزایش جذب هیدروژن با وارد کردن یون های سدیم به ساختار می تواند به دلیل افزایش برهمکنش فیزیکی(افزایش انرژی پیوندی) بین مولکول های هیدروژن و یون های سدیم و هم چنین افزایش مساحت سطح باشد. بنابراین یون های سدیم به عنوان مکان های اضافی جذب عمل کرده و مولکول های هیدروژن را جذب می نمایند.
    کلید واژگان: شبکه آلی فلزی MOF, 199 (Cu3(BTC)2), شبکه آلی فلزی Na, MOF, 199 (Na, Cu3(BTC)2), ذخیره سازی هیدروژن, دوپ کردن سدیم, مواد نانو متخلخل, سنتز به روش همزمانی}
    Mansoor Anbia, Mojtaba Faryadras, Ali Ghaffarinejad
    Over the last decade، metal-organic frameworks have been widely used as new options for hydrogen storage. The high surface area and regular pores cause these materials are good options for hydrogen storage. In this study sodium ions were introduced in (Cu3 (BTC) 2)MOF-199 holes with in situ method، and its hydrogen adsorption performance was measured at room temperature. The structure and morphology of the proposed new MOF ((Na. Cu3(BTC) 2)) was recognized with various techniques including TG، BET، SEM، FTIR and XRD. The results showed that after introducing sodium ions in the MOF، the main structure did not changed and the surface area increased from 1300 m2g-1 to 1434 m2g-1 and the hydrogen adsorption increased from 1 to 1. 4 wt% (40% increase). The increase in hydrogen adsorption after sodium doping may be due to growing surface area and physical interaction between hydrogen molecules and sodium ions (increasing binding energy). Therefore، sodium ions act as additional sorption sites and adsorb hydrogen molecules.
    Keywords: Metal organic framework MOF, 199, Hydrogen storage, Sodium doping, Nanoporous materials, In situ synthesis}
  • J. Davoodi*, H. Alizade
    In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequently in amount of hydrogen stored in carbon nanotube array. Moreover, our results show that the SWCNTs with radius smaller than (5, 5) SWCNTs, do not have the ability of adsorption and storage of hydrogen inside themselves.
    Keywords: Hydrogen storage, Carbon nanotube, Molecular dynamics simulation}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال