جستجوی مقالات مرتبط با کلیدواژه "nsaids" در نشریات گروه "شیمی"
تکرار جستجوی کلیدواژه «nsaids» در نشریات گروه «علوم پایه»جستجوی nsaids در مقالات مجلات علمی
-
In this work, a novel series of mefenamic acid analogs were developed and synthesized with the goal of developing a lead chemical that has anti-inflammatory efficacy and avoids the adverse effects of NSAIDs. Molecular docking analysis was performed by recruiting the ligands, COX-1 and COX-2 to identify the best-fitted molecule using AutoDock software. Afterwards, the compounds were synthesized and analyzed. To assess the drug's efficacy, the compounds were subjected to in vivo analgesic and anti-inflammatory experiments. Most of synthesized ligands have greater binding free energy than mefenamic acid on COX-1. When compared to the positive control, the compounds 2-(2,3-dimethylphenylamino)-N-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-oxothiazolidin-3-yl) benzamide, 2-(2,3-dimethylphenylamino)-N-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)benzamide, 2-(2, 3-dimethylphenylamino)-N-(4-oxo-2-p-tolylthiazolidin-3-yl) benzamide and 2-(2,3-dimethylphenylamino)-N-(2-(4-chlorophenyl)-4-oxothiazolidin-3-yl) benzamide, 2-(2,3-dimethylphenylamino)-N-(2-(4-nitrophenyl)-4-oxothiazolidin-3-yl)benzamide demonstrated a larger or comparable proportion of analgesic and anti-inflammatory action respectively. Furthermore, the selected compounds “2-(2,3-dimethylphenylamino)-N-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-oxothiazolidin-3-yl) benzamide”, and “2-(2,3-dimethylphenylamino)-N-(4-oxo-2-p-tolylthiazolidin-3-yl) benzamide” seemed to have the least ulcerogenic activity. These findings show that some of the newly created mefenamic acid analogs may be selected as lead compounds due to their significant biological properties without ulcerogenic activity.Keywords: Thiazolidinone, Molecular Docking, Mefenamic Acid, Cyclooxygenase, Nsaids, Synthesis
-
Nonsteroidal anti-inflammatories (NSAIDs), are very effective agents in relieving mild to moderate pain and inflammation by inhibiting two isoforms of prostaglandin G-H synthetase (I and II). In the present work, anthranilic acid derivatives' electronic and physicochemical properties are reported utilizing quantum chemical calculations that use the density functional theory (DFT), which forecast physicochemical properties. To clarify the type of chemical composition, drug-likeness, and cyclooxygenase inhibitor, ADME and molecular docking were used. The molecule was highly electrophilic and relatively stable from a quantum chemical computation perspective. The contour maps of HOMO-LUMO and molecule electrostatic potential were examined to display the charge density distributions that might be related to the biological activity.Keywords: DFT, ADME, Anthranilic acid derivatives, NSAIDs, HOMO
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.