به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « cellular automata-markov chain modeling » در نشریات گروه « محیط زیست »

تکرار جستجوی کلیدواژه «cellular automata-markov chain modeling» در نشریات گروه «علوم پایه»
  • کیوان عزی مند، حسین عقیقی*، داود عاشورلو، علیرضا شکیبا
    سابقه و هدف

    جزیره گرمایی شهری به عنوان یکی از اثرات توسعه شهرنشینی می تواند بر روی گیاهان و جانوران درگیر در اکوسیستم شهری و حومه ای، غلظت آلاینده ها، کیفیت هوا، مصرف انرژی و آب و همچنین سلامت و اقتصاد انسان تاثیر منفی بگذارد. بنابراین، تجزیه وتحلیل مکانی-زمانی تغییرات جزیره گرمایی شهری به عنوان رویکردی موثر برای درک تاثیر شهرنشینی بر اکوسیستم شهری و حومه ای در نظر گرفته شده است که می تواند از توسعه و برنامه ریزی شهری پایدار نیز حمایت کند. بر این اساس، این مطالعه یک رویکرد جدید برای شناسایی روند و پیش بینی الگوی تغییرات جزایرحرارتی شهری با استفاده از تجزیه و تحلیل آماری، آنتروپی شانون و آمار کای اسکور ارایه می کند.

    مواد و روش ها

    منطقه موردمطالعه در این تحقیق شامل شهر رشت و اطراف آن است که در شمال کشور ایران واقع است. این مطالعه با استفاده از تصاویر سنجش از دور از سال 1991 تا 2021 که توسط ماهواره لندست 5 و 8 با فاصله زمانی ثابت 10 سال جمع آوری شده است، اجرا شد. تمامی تصاویر مربوط به فصل تابستان است. برای انجام این مطالعه ابتدا پیش پردازش های موردنیاز همچون تصحیحات اتمسفری و رادیومتریکی بر روی تصاویر اعمال شده است سپس در گام دوم شاخص های بیوفیزیکی سطح منطقه از تصاویر ماهواره ای استخراج شده است. در گام سوم دمای سطح زمین نیز با استفاده از تصاویر ماهواره ای در سال 2021 محاسبه شد. در گام چهارم، رگرسیون خطی چند متغیره خصوصیات بیوفیزیکی سطح و دمای سطح زمین در سال 2021 اعمال شد و سپس از مدل سلول های خودکار - زنجیره مارکوف برای پیش بینی دمای سطح زمین برای سال 2031 استفاده شد. در نهایت الگوی تغییرات جزایر حرارتی شهر رشت با استفاده از تحلیل های آماری در جهات جغرافیایی مختلف و دوره های زمانی متفاوت مورد بررسی قرار گرفت.

    نتایج و بحث: 

    نتایج این مطالعه نشان داد که بیشترین همبستگی مثبت (R=0.89) بین شاخص NDBI و دمای سطح زمین بوده است. همچنین بیشترین همبستگی منفی (R = -0.81) بین شاخص سبزینگی و دمای سطح زمین و در نهایت کمترین همبستگی (R = 0.42) بین شاخص درخشندگی با دمای سطح زمین بود. پیش بینی دمای سطح زمین با استفاده از مدل رگرسیون چند متغیره و شاخص های بیوفیزیکی سطح حاکی از خطای پایین این مدل (RMSE=1.33K) برای پیش بینی دمای سطح زمین در سال 2021 است. این بدان معناست که مقادیر پیش بینی شده در سال 2021 به مقادیر واقعی نزدیک است و بنابراین می توان به این مدل برای پیش بینی دمای سطح زمین در سال 2031 اعتماد کرد. تجزیه و تحلیل آماری درباره الگوی تغییرات جزایر حرارتی مشاهده شده و مورد انتظار نشان می دهد که میزان نرخ تغییرات برحسب زمان و مکان متفاوت بوده است و همچنین به صورت پیوسته از سال 1991 تا 2031 رو به افزایش است. علاوه بر این این تجزیه و تحلیل ها همچنین نشان داد که جزایر حرارتی شهر رشت از درجه آزادی بالا و درجه پراکندگی بالایی برخودار است. بنابراین درجه خوب بودن آن منفی است.

    نتیجه گیری

    الگوی تغییرات جزایر حرارتی از گذشته تا به زمان حال و پیش بینی آن در آینده نشان می دهد که وابستگی بالایی با الگوی تغییرات اراضی ساخته شده دارد. در نتیجه با نظارت و کنترل مستقیم الگوی اراضی ساخته شده (همچون توسعه عمودی از طریق بام و دیوارهای سبز و مصالح ساختمانی با توان بازتابی بالا) و جلوگیری از ساخت و سازها در زمین های کشاورزی حاشیه شهر الگوی تغییرات جزایر حرارتی را کنترل نمود.

    کلید واژگان: داده های سنجش ازدور, سلول های خودکار- مارکوف, تحلیل های آماری, جزایر حرارتی شهری
    Keyvan Ezimand, Hossein Aghighi *, Davod Ashourloo, Alireza Shakiba
    Introduction

    The urban heat island (UHI) as a climatic effect of urbanization can negatively impact the flora and fauna involved in urban and suburban ecosystems, the presence of pollutants, air quality, energy and water consumption, as well as human health and economy. Therefore, spatiotemporal analysis of the urban heat island changes has been considered an effective approach to understanding the impact of urbanization on the urban and suburban ecosystem, which also can support sustainable urban development and planning. Accordingly, this study contributes a novel approach to identifying the trend and predicting the pattern of UHI changes using statistical analysis, Shannon's entropy and chi-score statistics.

    Material and methods

    The study area of this research is the city of Rasht and its surroundings, a region located in the north of Iran. This research was implemented using remote sensing images from 1991 to 2021 that were collected by LANDSAT 5 and 8 with a fixed time interval of 10 years. All images were captured in the summer. In order to conduct this research in the pre-foresight stage, first, the required preprocessing, including atmospheric and radiometric corrections applied to the satellite images. Then, the surface biophysical characteristics of the study area were extracted from the satellite images. In the third step, the land surface temperature was computed using satellite images in 2021. In the fourth step, Multivariate linear regression between surface biophysical characteristics and the land surface temperature in 2021 was applied and then the cellular automata-Markov chain model was utilized to predict the land surface temperature for 2031. Finally, the pattern of changes in the urban heat island of Rasht city was investigated using statistical analysis in different geographic directions and different time periods.

    Results and discussion

    The results of this study indicate that the highest positive correlation (R=0.89) was between NDBI and LST. Moreover, the highest negative correlation (R=-0.81) was between the greenness and LST. Our results also showed that the lowest correlation (R=0.42) was between the brightness and LST. The predicted LST corresponding to surface biophysical characteristics using a multivariate linear regression model illustrates the low error of this approach (RMSE=1.33K) in 2021. This means that the predicted values in 2021 are close to the real values, and therefore, this model can be trusted to predict LST in 2031. Statistical analysis of the patterns of observed and expected changes in UHI clearly illustrated that Rasht urban expansion and the UHI expansion will consistently continue to increase from 1991 to 2031. However, the expansion rate changes over time and space. Moreover, these analyses also showed that the UHI of Rasht city has a high degree of freedom and a high degree of sprawl. Thus, and as a result, its degree of goodness is negative.

    Conclusion

    The pattern of UHI changes is highly dependent on the pattern of built-up land changes: as a result, sustainable development, resilience and environmental protection of Rasht requires direct monitoring and control of the pattern of urban growth, such as preventing changes in built-up areas and agricultural lands in suburban areas by incorporating a vertical form of development as well as constructing green roofs and walls and using high-reflectance building materials.

    Keywords: Remote sensing data, cellular automata-Markov chain modeling, Statistical analysis, urban heat island (UHI)
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال