جستجوی مقالات مرتبط با کلیدواژه "omi" در نشریات گروه "محیط زیست"
تکرار جستجوی کلیدواژه «omi» در نشریات گروه «علوم پایه»-
امروزه افزایش و توسعه شهرنشینی، فعالیت های صنعتی و مصرف سوخت های فسیلی آلودگی هوا را در شهرهای بزرگ افزایش داده است. یکی از شاخص های آلودگی هوا دی اکسید نیتروژن است. در این مقاله به مطالعه روند تغییرات غلظت دی اکسید نیتروژن مربوط به تروپوسفر در شهر کرمانشاه در بازه زمانی 1385 تا 1397 ارایه شده است. در این مطالعه غلظت ماهانه دی اکسید نیتروژن بدست آمده نشان می دهند بیشترین مقدار دی اکسید نیتروژن در فصل زمستان و کمترین مقدار در تابستان اتفاق می افتد. به طوریکه بیشترین مقدار دی اکسید نیتروژن در ماه دی و کمترین مقدار آن در ماه خرداد اتفاق می افتد شرایط هواشناسی می تواند شدت آلودگی دی اکسید نیتروژن تروپوسفری و گستردگی آن را بیشتر کند. نتایج غلظت دی اکسید نیتروژن تروپوسفری با پارامترهای هواشناسی نشان دادند ضریب همبستگی پیرسون دی اکسید نیتروژن با باد و دمای سطحی به ترتیب رابطه معکوسی دارد همچنین همبستگی پیرسون دی اکسید نیتروژن با بارش رابطه مستقیمی دارد که نشان می دهد با افزایش سرعت باد غلظت دی اکسید نیتروژن کاهش می یابد برای پایش دی اکسید نیتروژن از سنجنده OMI استفاده شد. در این مطالعه دی اکسید نیتروژن با استفاده از سنجنده OMI در دو ماه فوریه و جولای 2016 نشان داد که در ماه فوریه مقدار دی اکسید نیتروژن بیشتر و در ماه جولای این مقدار کمتر است.
کلید واژگان: آلودگی هوا, شهر کرمانشاه, دی اکسید نیتروژن, پارامترهای هواشناسی, OMI2676-3060, Volume:6 Issue: 9, 2021, PP 129 -142Nitrogen dioxide is not only a potential air pollutant in urban and industrial area but it is a photochemical smog precursor and pollutant ozone. Urban area has high tropospheric concentrations and close to the earth surface. Nitrogen dioxide has a great impact on human health and its increase in the air causes many diseases. Therefore, monitoring the amount of nitrogen dioxide and its changes is one of the important issues in metropolitan management. Considering the importance of nitrogen dioxide in air pollution, tropospheric nitrogen dioxide concentration with meteorological parameters the trend of changing the tropospheric nitrogen dioxide using OMI sensor in the period 2006 to 2019 has been investigated in this research. OMI sensor images placed on the Aura satellite are used to study nitrogen dioxide in the troposphere layer. The results showed that the highest amount of nitrogen dioxide occurred in the cold months of the year and the lowest amount occurred in the warm months of the year. Meteorological conditions can increase the severity of tropospheric nitrogen dioxide pollution and spread it further. The results of tropospheric nitrogen dioxide concentration with meteorological parameters showed that the correlation coefficient of Pearson nitrogen dioxide is inversely related to wind speed, horizontal visibility and surface temperature respectively. Also, Pearson correlation of nitrogen dioxide is directly related to relative humidity.
Keywords: Air pollution, Kermanshah, NO2, Meteorological parameters, OMI -
هواویزها ذرات جامد و مایع معلق در جو هستند که با تغییر خواص فیزیکی و تابشی ابرها بر بودجه تابشی جو تاثیر می گذارند. عمق نوری هواویزها (AOD) و نمای آنگستروم (α) از مهم ترین ویژگی های هواویزها به شمار می روند. هدف از مقاله حاضر، مقایسه ویژگی های فیزیکی و نوری هواویزها در دو منطقه شهری تهران و مشهد برای دوره 4 ساله از 2010 تا 2013 است. برای رسیدن به این هدف، داده های سنجنده OMI برای تعیین و محاسبه نمایه های نوری هواویزها به کار رفته است. مقایسه توزیع بسامد فصلی AOD (500 nm) در تهران و مشهد بیانگر این است که در همه فصول مقدار AOD در تهران بیشتر از مشهد بوده و به طور کلی غلظت هواویزهای تهران بیشتر از مشهد است. در هر دو شهر، بیشترین مقدار AOD در فصل بهار و تابستان رخ می دهد. هم چنین کمترین مقدار AOD برای تهران و مشهد مربوط به فصل زمستان است. بررسی تغییرات روزانه α نیز نشان می دهد که مد غالب هواویزهای تهران مخلوطی از ذرات ریز و درشت و مد غالب هواویزهای مشهد از نوع ذرات ریز است. مقایسه توزیع بسامد فصلی α در تهران و مشهد حاکی از آن است که در هر فصل هواویزهای مشهد دارای ابعاد کمتر از هواویزهای غالب در تهران استکلید واژگان: هواویزهای جو, نمای آنگستروم, عمق نوری هواویزها, ماهواره OMIAtmospheric aerosols, including solid and liquid particles suspended in the atmosphere, are a mixture of particles in the air, of different sizes, shapes, compositions, and chemical, physical, and thermodynamic properties. They affect the earth’s radiative budget and climate directly by absorbing and scattering the radiation, and indirectly by acting as cloud condensation nuclei. Aerosols have both direct and indirect effects on the climate by scattering and absorbing solar and terrestrial radiation as well as modifying the distribution of clouds and their radiative properties. They have been concerned in health effects and visibility reduction mostly in urban and regional areas. Aerosol types which contribute to the scattering include organic particles, water-soluble inorganic species and dust. In urban areas, the principle particle species that absorbs radiation is black carbon, that is produced from incomplete combustion processes mainly from diesel engines. Natural aerosols are generally larger in size than the secondary aerosols produced from gaseous precursors and combustion, and their chemical composition depends on their sources. However, aerosols produced from natural and antropogenic sources are mixed together and thereby each aerosol particle is a composite of different chemical constituents. Atmospheric aerosol optical and physical properties are two of the major uncertainties in global climate change which are also responsible for many impressive atmospheric effects. Therefore, retrieval of the aerosol optical parameters is an important issue for the atmospheric research communities. Investigations of aerosol characteristics and their optical properties will lead to a better understanding of both the regional and local behavior of aerosols over a region. Aerosol optical indices such as aerosols optical depth, Angstrom exponent, single scaterring albedo, asymmetry parameter are the most important characteristics of aerosols that are influenced by the physical properties and concentration of particles. These properties also play an important role in the Earth’s climate and radiation budget. Aerosols optical depth is a key factor to measure the degree of atmospheric pollution and to study the climate response to aerosol radiative forcing. Its value shows the aerosol density, while Angstrom exponent is an intensive parameter that depends on the aerosol size distribution and increases with decreasing particle size. In other words, Angstrom exponent is the slope of the logarithm of aerosol optical depth versus the logarithm of wavelength. It is commonly used to characterize the wavelength dependence of aerosols optical depth and provides some nformation on the aerosols size distribution. When scattering is dominated by fine particles, Angstrom exponent has large values(i.e., around 2); it approaches to 0 when scattering is dominated by coarse particles. Remote sensing of aerosols from satellite-based sensors turn into an important instrument to monitor and quantify the aerosol optical properties over the globe. Study of aerosol optical properties provides a detailed knowledge of both the regional and local behavior of aerosols as well as their influence on the Earth’s climate, radiative forcing, visibility and photochemistry. Although considerable development has been taken in understanding aerosol properties, they are poorly quantified because of the lack of adequate information on temporal and spatial variability of aerosols. In this paper, using the satellite data from the Ozone Monitoring Instrument (OMI) aerosols optical depth and Angstrom exponent are investigated over two megacities in Iran, Tehran and Mashhad, during the period from January 2010 to December 2013. OMI was launched in July 2004 on NASA’s EOS-Aura satellite, also part of the A-train constellation. The reasons of choosing these urban areas are mainly the existence of a large number of populations and substantial sources of emissions from natural and anthropogenic emissions. Previous studies show that the increasing emissions of aerosols during the past decades in these two area have affected their local climate. Here daily, monthly and seasonal variations of aerosol properties in terms of optical depth and Angstrom exponent are analyzed to provide a detailed insight into the variation of aerosols loading and their possible causes. Results concerning the seasonal frequency distribution of aerosols optical depth (AOD) at 500 nm indicate that values of this index in Tehran are higher than Mashhad in all seasons. It shows the existence of higher aerosol density causing the higher atmospheric turbidity over Tehran than Mashhad. During the study period, the daily amount of AOD over Tehran is ranged from 0.2 to 1.6, while over Mashhad the daily AOD is ranged from 0.1 to 0.9. High values of aerosol optical depth are obtained during the spring and summer seasons, respectively, and low values are seen during the winter in the both cities. There are also significant variations of Angstrom exponent over the two cities. Based on the results, the dominant mode of aerosols over Tehran is a mixture of fine and coarse particles, but fine particles are dominant over Mashhad. Therefore, it can be deduced that turbidity in Tehran is subject to a complex mixture of aerosol types, including anthropogenic aerosols and dust, while anthropogenic aerosols are dominant over Mashhad. To further understand the seasonal variations of aerosols, AOD was studied at different wavelengths. Results show the seasonal dependency of AOD values that are mainly related to various emission sources. In order to investigate the origins of aerosols and transports of the air masses toward the understudy regions, back trajectory analyses based on the NOAA HYSPLIT (National Oceanic and Atmospheric Administration Hybrid Single Particle Langrangian Integrated Trajectory) model, was performed. For six days, as the representatives of polluted and clean days, air mass back trajectories were computed using HYSPLIT model. Results indicate the existence of different patterns of particles transport over the two cities. It is seen that the sources of aerosols over Tehran are both from local emissions and from the long range dust transport, while aerosols over Mashhad are more likely from local sources.Keywords: aerosols, aerosols optical depth, Angstrom exponent, OMI
-
Monitoring of SO2 column concentration over Iran using satellite-based observations during 2005-2016Pollution, Volume:5 Issue: 2, Spring 2019, PP 257 -268For the first time, sulfur dioxide concentration was monitored between 2005 and 2016 over Iran which is among the countries with a high SO2 emission rate in the world. To that end, SO2 column concentration at Planetary Boundary Layer (PBL) from Ozone Monitoring Instrument (OMI) was analyzed. OMI is a sensor onboard the Aura satellite which can measure daily SO2 concentration on the global scale. From OMI maps, 19 notable SO2 hotspots were detected over Iran. The results indicate that the most elevated level of SO2 among these 19 hotspots belong to Khark Island and Asaluye in Bushehr province, southwest of Iran. Annual trend analysis shows that SO2 concentration has been slightly augmented during 2005-2016 over this country. Distribution analysis of SO2 concentration over Iran showed that the most polluted provinces are Bushehr, Khuzestan and Ilam lied in the southwest of Iran. On the contrary, the lowest level of SO2 has observed over northwest of Iran at West and East Azerbaijan and Ardabil provinces. The correlation coefficient between total energy production in Iran and SO2 concentration from 2005 to 2016 is as high as ~0.7. Hence, it can be derived that energy production, most notably production of crude oil, plays a pivotal role in SO2 concentration over Iran.Keywords: Sulfur Dioxide, Iran, Aura, OMI, Trace Gases, GIS
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.