به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "یادگیری بدون نظارت" در نشریات گروه "فنی و مهندسی"

جستجوی یادگیری بدون نظارت در مقالات مجلات علمی
  • بهناز رضایی، رضا برادران کاظم زاده*، محمدعلی رستگار

    در این مقاله، به مسئله ی چگونگی یافتن زوج های سودآور با اعمال محدودیت خودکار در فضای جستجوی زوج دارای ها با استفاده از تکنیک های یادگیری ماشین و ادغام یک الگوریتم یادگیری بدون نظارت، O P T I C S، به فرایند شناسایی و انتخاب زوج ها در معاملات زوجی پرداخته شده است. همچنین، جهت بهینه سازی سبد متشکل از زوج دارایی ها و تخصیص سرمایه بهینه به آنها، از الگوریتم مبتنی بر ژنتیک با هدف افزایش نسبت شارپ استفاده شده است. عملکرد تکنیک پیشنهادی برای خوشه بندی خودکار، نسبت به روش های متداول جستجوی زوج دارایی ها توسط سرمایه گذاران بهتر بوده و منجر به دستیابی به میانگین نرخ بازگشت سرمایه و نسبت شارپ بالاتری برای سبد در معاملات با استفاده از زوج های منتخب از خوشه ها شده است. این معیارهای ارزیابی محاسبه شده برای سبد، بعد از به کارگیری الگوریتم بهینه سازی ژنتیک دوهدفه ارتقا یافته اند. این مطالعه با استفاده از داده های قیمتی درونروزی گروهی از سهام های بورس اوراق بهادار تهران بین سال های 2015 تا 2020 و در نظر گرفتن هزینه های معاملاتی شبیه سازی شده است.

    کلید واژگان: معاملات زوجی, یادگیری ماشین, یادگیری بدون نظارت, الگوریتم بهینه سازی ژنتیک, هزینه های معاملاتی
    B. Rezaei, R. Baradaran Kazemzadeh *, M.A. Rastegar

    In this paper, the problem of finding profitable pairs by automatically limiting the search space of pairs using machine learning techniques and integrating an unsupervised learning algorithm, OPTICS, to pair identification and selection in pair trading is discussed. In addition, to optimize the portfolio consisting of pairs of assets and allocate optimal capital to them, a genetic-based algorithm to increase the Sharpe ratio is used. The proposed technique for automatic clustering is better than the conventional methods of searching for pairs of assets used by investors and leads to a higher average rate of return on investment and a higher Sharpe ratio for portfolios in trading using selected pairs of clusters. These calculated evaluation criteria for the portfolio were improved after using a bi-objective optimization genetic algorithm. This study was simulated using intraday price data of a group of stocks in the Tehran Stock Exchange between the years 2015 to 2020 and taking into account the transaction costs.

    Keywords: Pairs Trading, Neutral Market, Machinelearning, Unsupervised Learning, Optimization Genetic Algorithm, Transaction Costs
  • مهشام کوشکی، عصمت راشدی*، مریم آموزگار
    جداسازی اشیاء متحرک از پس زمینه یکی از مسایل مهم و کاربردی در حوزه بینایی ماشین است. در این زمینه راهکارهای بسیار زیادی ارائه شده است. دسته ای از این راهکارها مبتنی بر یادگیری عمیق و شبکه های عصبی عمیق هستند که عمدتا به صورت نظارت شده و برون خط هستند. در این مقاله یک روش برخط و بدون نظارت مبتنی برای جداسازی پس زمینه از پیش زمینه در داده های ویدیویی ارائه شده است که در آن پس زمینه به صورت یک ماتریس کم رتبهL توسط یک شبکه عصبی عمیق استخراج می شود و پیش زمینه به صورت یک ماتریس تنک با تفریق L از تصویر اصلی به دست می آید. در طراحی شبکه عصبی فوق، از یک شبکه حافظه کوتاه-مدت بلند (LSTM) مبتنی بر سازوکار توجه استفاده شده است. یادگیری این روش به صورت بدون نظارت انجام می شود و می تواند آموزش ببیند به قسمت هایی از داده ها و تصویر که پیش زمینه در آن وجود دارد، وزن بیشتری اختصاص داده و توجه و تمرکز بیشتری داشته باشد. جهت ارزیابی مدل پیشنهادی، پایگاه داده LASIEST که تعداد زیادی از چالش های حوزه تفریق پس زمینه را پوشش می دهد، انتخاب شده است. کارایی راهکار پیشنهادی به طور کمی با استفاده از معیارهای استاندارد یادآوری، دقت و اندازه ی F-measuresارزیابی و با تعدادی از روش های معتبر و مطرح مقایسه شده که به ترتیب به میزان 8%، 10%، و 5% بهبود داشته است. علاوه بر این از نظر کیفی و شهودی نیز با راهکارهای موجود مورد مقایسه قرار گرفته که موفق به اخذ نتایج مطلوب تر شده است.
    کلید واژگان: تفریق پس زمینه از پیش زمینه, یادگیری عمیق, شبکه عصبی LSTM, سازوکار توجه, یادگیری بدون نظارت, تفریق برخط پس زمینه
    Mahsham Kushki, Esmat Rashedi *, Maryam Amoozegar
    Detecting moving objects is one of the important and practical issues in the field of machine vision. There are many solutions in this field.Some of these solutions are based on deep learning and deep neural networks, which are mainly supervised and offline.This paper presents an online and unsupervised approach leveraging deep learning for separating background from foreground in video data. The background is extracted as a low-rank matrix L using a deep neural network, then subtracting L from the original image gives the sparse foreground matrix.In designing the above neural network, a longshort-term memory (LSTM) network based on the attention mechanism has been used. The model usesunsupervised learning and can pay more attention and focus to the desired parts of the image.In order to evaluate the proposed model, the LASIESTA database, which covers a large number of challenges in the field of background subtraction, is selected.The proposed solution is compared with some well-known methods using standard criteria such as recall, precision and F-measure that shows 8, 10, and 5 percent improvement, respectively. Furthermore,it is qualitatively compared with the existing methods and succeeded in obtaining more favorable results.
    Keywords: Background Subtraction, Deep Learning, LSTM Neural Network, Attention Mechanism, Unsupervised Learning, Online Background Subtraction
  • فرهاد عابدین زاده طرقبه*، یگانه مدرس نیا، سید عابد حسینی

    اخیرا انجام پژوهشهای مختلف تحلیل داده برای یافتن و انتخاب ویژگیهای منا سب بدون دا شتن برچ سب د سته به کمک رویکردهای انتخاب ویژگی بدون نظارت ضروری شده است. علیرغم وجود چندین جعبهابزار در دسترس که روش های انتخاب ویژگی را برای کاهش ویژگیهای اضافی، ابعاد داده و هزینه های محاسباتی ارایه میدهند، نیاز به دانش برنامهنویسی و نپرداختن به داده های بدون برچسب دنیای واقعی، محبوبیت آنها را کاهش داده است. در این مطالعه جعبهابزار خودکار انتخاب ویژگی بدون نظارت Auto-UFSTool برای نرم افزار متلب پیشنهادشده که کاربرپسند و کاملا خودکار است و از رویکردهای انتخاب ویژگی بدون نظارت مختلف مشتق شده از جدیدترین پژوهشها استفاده میکند. این جعبهابزار مجموعهای از 25 رویکرد انتخاب ویژگی بدون نظارت قوی است که بیشتر آنها در پنج سال گذشته توسعه یافتهاند. بنابراین مقایسه واضح و سازمانیافته با روش های متفاوت را بدون نیاز به برنامهنویسییی امکانپذیر میکند و حتی کاربران بدون تجربه قبلی برنامهنویسییی، میتوانند از پیادهسییازی واقعی توسییر رابر کاربری گرافیکی اسیتفاده نمایند. همچنین این جعبهابزار فرصیت را برای ارزیابی نتایج انتخاب ویژگی و ایجاد نمودارها جهت مقایسیه زیرمجموعه ها با اندازه های مختلف فراهم میکند. این جعبهابزار در پایگاه تبادل فایل نرم افزار متلب به صورت رایگان قابلد سترس ا ست و شامل ا سکریپتها و برنامه منبع برای هر روش است. این جعبهابزار بهصورت رایگان برای عموم در دسترس است: bit.ly/AutoUFSTool . 

    کلید واژگان: انتخاب ویژگی بدون نظارت, نرم افزار متلب, جعبه ابزار خودکار, کاهش ابعاد, یادگیری بدون نظارت
    Farhad Abedinzadeh Torghabeh, Yeganeh Modaresnia, Seyyed Abed Hosseini *

    Various data analysis research has recently become necessary in to find and select relevant features without class labels using Unsupervised Feature Selection (UFS) approaches. Despite the fact that several open-source toolboxes provide feature selection techniques to reduce redundant features, data dimensionality, and computation costs, these approaches require programming knowledge, which limits their popularity and has not adequately addressed unlabeled real-world data. Automatic UFS Toolbox (Auto-UFSTool) for MATLAB, proposed in this study, is a user-friendly and fully-automatic toolbox that utilizes several UFS approaches from the most recent research. It is a collection of 25 robust UFS approaches, most of which were developed within the last five years. Therefore, a clear and systematic comparison of competing methods is feasible without requiring a single line of code. Even users without any previous programming experience may utilize the actual implementation by the Graphical User Interface (GUI). It also provides the opportunity to evaluate the feature selection results and generate graphs that facilitate the comparison of subsets of varying sizes. It is freely accessible in the MATLAB File Exchange repository and includes scripts and source code for each technique. The link to this toolbox is freely available to the general public on: bit.ly/AutoUFSTool

    Keywords: Unsupervised Feature Selection, MATLAB, Automatic Toolbox, Dimension Reduction, Unsupervised learning
  • Meysam Roostaee *, Razieh Meidanshahi

    In this study, we sought to minimize the need for redundant blood tests in diagnosing common diseases by leveraging unsupervised data mining techniques on a large-scale dataset of over one million patients' blood test results. We excluded non-numeric and subjective data to ensure precision. To identify relationships between attributes, we applied a suite of unsupervised methods including preprocessing, clustering, and association rule mining. Our approach uncovered correlations that enable healthcare professionals to detect potential acute diseases early, improving patient outcomes and reducing costs. The reliability of our extracted patterns also suggest that this approach can lead to significant time and cost savings while reducing the workload for laboratory personnel. Our study highlights the importance of big data analytics and unsupervised learning techniques in increasing efficiency in healthcare centers.

    Keywords: Clinical Data, data mining, Unsupervised learning, Association Rule Mining, Clustering
  • حمید قالیباف محمدآبادی، ناصر حافظی مقدس*، غلامرضا لشکری پور، رئوف غلامی، حسین طالبی

    در این تحقیق از روش یادگیری بدون نظارت جهت تعیین واحد های ژیومکانیکی در یکی از چاه های نفتی جنوب ایران با استفاده از لاگ های داده های چاه نگاری شامل نگاره گاما طبیعی (SGR) ، نگاره گاما اصلاح شده (CGR)، چگالی (RHOB)، تخلخل نوترونی (NPHI)، زمان موج برشی (DTSM) و زمان موج طولی (DTCO) استفاده شده است. برنامه نویسی مورد نیاز در محیط پایتون انجام گرفته است. در این راستا ابتدا بعد از پردازش داده های چاه نگاری از دو الگوریتم محبوب قدرتمند نظارت شده یادگیری ماشین ایکس جی بوست (XGBoost) و شبکه عصبی پرسپترون چند لایه (Multi-Layer Perceptron Neural Network) جهت بازیابی داده های گمشده استفاده گردید. سپس از روش های بدون نظارت یادگیری ماشین شامل مدل k- میانگین (K-Means Clustering)، الگوریتم خوشه بندی سلسله مراتبی (HAC)، الگوریتم خوشه بندی DBSCAN مبتنی بر غلظت، و مدل آمیخته گوسی (Gaussian Mixture Modelling) جهت تعیین واحد های ژیومکانیکی مخزنی پر فشار، آهکهای نارک لایه و غیرمخزنی مسیله دار استفاده شد. در این روش ها الگوریتم ها خود الگوهای زیر سطحی را با استفاده از داده ها شناسایی می کنند که ممکن است به راحتی در طول کاوش داده قابل مشاهده نباشند. معیار ارزیابی دقت روش دقت در شناسایی آهک های نازک لایه، سازندهای غیر مخزنی مسیله دار و افق های پر فشار سازند های مورد مطالعه در نظر گرفته شد. نتایج مطالعات نشان داد که از بین روش های مورد مطالعه روش GMM به جای اینکه بر اساس فاصله باشد، مبتنی بر توزیع است و از مرزهای خوشه/تصمیم بیضی استفاده می کند. بنابراین، منجر به طبقه بندی نرم تری می شود. علاوه براین، بخاطر قرار دادن الگوهای احتمالاتی مختلف برای شناسایی واحد های ژیومکانیکی، روشی بهتر جهت تعیین واحدهای مخزنی پر فشار ایلام، سروک و آهکهای نازک لایه می باشد.

    کلید واژگان: الگوریتم های یادگیری ماشین, یادگیری بدون نظارت, یادگیری نظارت شده, مدل - k میانگین, مدل آمیخته گوسی, الگوریتم(XGBoost), الگوریتم (Multi-Layer Perceptron Neural Network)
    Hamid Ghalibaf Mohammad Abadi, Naser Hafezi Moghaddas *, GholamReza Lashkaripour, Raoof Gholami, Hossin Talebi

    Machine Learning algorithms have widely been adopted to group well log measurements into distinguished lithological groupings, known as Facies/Geomechanical units. This procedure can be achieved using either unsupervised learning or supervised learning algorithms. Supervised learning is the most common and practical of machine learning tasks and it is designed to learn from the example using input data that has been mapped to the correct output. In this research, we can run the modeling using Unsupervised Learning, where we authorize the algorithms to recognize underlying patterns within the data that may not be easily visible during data exploration. Therefore, an unsupervised learning method has been used to determine geomechanical zones. In this method, we give one's consent/assent to algorithms to identify subsurface patterns using data that may not be easily visible during data exploration. First, the application of practical methods of machine learning algorithms, including the K-mean model, Based Spatial Clustering of Applications with Noise (DBSCAN), Hierarchical Agglomerative Clustering (HAC), and Gaussian mixed model, will be explained, And then in this research, the best method for predicting petrophysical layers will be presented and compared the results with an established Lithofacies curve. The required programming is done in a Python environment. In this regard, after well processing, The XGBoost and Multi-Layer Perceptron Neural Network Algorithms have been used to predict the missing data. The optimal number of clusters is obtained using an ‘elbow’, In this article, as the title suggests, Four methods are used in cluster analysis unsupervised machine learning algorithms, but in petrophysical, geological, and geomechanical realities, data seldom conform to good circle patterns. Whereas if the data clusters are circular, K-Means clustering and Hierarchical Agglomerative Clustering( HAC) work great. Therefore, it is better to use the Gaussian mixed models (GMM) method.

    Keywords: Machine Learning, Supervised machine learning, Unsupervised Machine Learning, K Means Clustering Modelling, Gaussian Mixture Modelling, XGBoost Algorithm
  • صدیقه وحیدی فردوسی، حسین امیرخانی*

    با توجه به ماهیت بدون ناظر مسایل خوشه بندی و تاثیرگذاری مولفه های مختلف از جمله تعداد خوشه ها، معیار فاصله و الگوریتم انتخابی، ترکیب خوشه بندی ها برای کاهش تاثیر این مولفه ها و افزایش صحت خوشه بندی نهایی معرفی شده است. در این مقاله، روشی برای ترکیب وزن دار خوشه بندی های پایه با وزن دهی به خوشه بندی ها بر اساس روش AD ارایه شده است. روش AD برای برآورد صحت انسان ها در مسایل جمع سپاری از هماهنگی یا تضاد بین آرای آنها استفاده می کند و با پیشنهاد مدلی احتمالاتی، فرآیند برآورد صحت را به کمک یک فرآیند بهینه سازی انجام می دهد. نوآوری اصلی این مقاله، تخمین صحت خوشه بندی های پایه با استفاده از روش AD و استفاده از صحت های تخمین زده شده در وزن دهی به خوشه بندی های پایه در فرآیند ترکیب است. نحوه تطبیق مساله خوشه بندی به روش برآورد صحت AD و نحوه استفاده از صحت های برآورد شده در فرآیند ترکیب نهایی خوشه ها، از چالش هایی است که در این پژوهش به آنها پرداخته شده است. چهار روش برای تولید خوشه بندی های پایه شامل الگوریتم های متفاوت، معیارهای فاصله ی متفاوت در اجرای k-means، ویژگی های توزیع شده و تعداد خوشه های متفاوت بررسی شده است. در فرآیند ترکیب، قابلیت وزن دهی به الگوریتم های خوشه بندی ترکیبی CSPA و HGPA اضافه شده است. نتایج روش پیشنهادی روی سیزده مجموعه داده مصنوعی و واقعی مختلف و بر اساس نه معیار ارزیابی متفاوت نشان می دهد که روش ترکیب وزن دار ارایه شده در بیش تر موارد بهتر از روش ترکیب خوشه بندی بدون وزن عمل می کند که این بهبود برای روش HGPA نسبت به CSPA بیشتر است.

    کلید واژگان: خوشه بندی ترکیبی وزندار, یادگیری بدون نظارت, HGPA, CSPA, AD
    Sedigheh Vahidi Ferdosi, Hossein Amirkhani*

    Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in this paper we propose a method to use weighting in the ensemble clustering problem. The accuracies of base clusterings are estimated using an algorithm from crowdsourcing literature called agreement/disagreement method (AD). This method exploits the agreements or disagreements between different labelers for estimating their accuracies. It assumes different labelers have labeled a set of samples, so each two persons have an agreement ratio in their labeled samples. Under some independence assumptions, there is a closed-form formula for the agreement ratio between two labelers based on their accuracies. The AD method estimates the labelers’ accuracies by minimizing the difference between the parametric agreement ratio from the closed-form formula and the agreement ratio from the labels provided by labelers. To adapt the AD method to the clustering problem, an agreement between two clusterings are defined as having the same opinion about a pair of samples. This agreement can be as either being in the same cluster or being in different clusters. In other words, if two clusterings agree that two samples should be in the same or different clusters, this is considered as an agreement. Then, an optimization problem is solved to obtain the base clusterings’ accuracies such that the difference between their available agreement ratios and the expected agreements based on their accuracies is minimized. To generate the base clusterings, we use four different settings including different clustering algorithms, different distance measures, distributed features, and different number of clusters. The used clustering algorithms are mean shift, k-means, mini-batch k-means, affinity propagation, DBSCAN, spectral, BIRCH, and agglomerative clustering with average and ward metrics. For distance measures, we use correlation, city block, cosine, and Euclidean measures. In distributed features setting, the k-means algorithm is performed for 40%, 50%,…, and 100% of randomly selected features. Finally, for different number of clusters, we run the k-means algorithm by k equals to 2 and also 50%, 75%, 100%, 150%, and 200% of true number of clusters. We add the estimated weights by the AD algorithm to two famous ensemble clustering methods, i.e., Cluster-based Similarity Partitioning Algorithm (CSPA) and Hyper Graph Partitioning Algorithm (HGPA). In CSPA, the similarity matrix is computed by taking a weighted average of the opinions of different clusterings. In HGPA, we propose to weight the hyperedges by different values such as the estimated clustering accuracies, size of clusters, and the silhouette of clusterings. The experiments are performed on 13 real and artificial datasets. The reported evaluation measures include adjusted rand index, Fowlkes-Mallows, mutual index, adjusted mutual index, normalized mutual index, homogeneity, completeness, v-measure, and purity. The results show that in the majority of cases, the proposed weighted-based method outperforms the unweighted ensemble clustering. In addition, the weighting is more effective in improving the HGPA algorithm than CSPA. For different weighting methods proposed for HGPA algorithm, the best average results are obtained when we use the accuracies estimated by the AD method to weight the hyperedges, and the worst results are obtained when using the normalized silhouette measure for weighting. Finally, among different methods for generating base clusterings, the best results in weighted HGPA are obtained when we use different clustering algorithms to come up with different base clusterings.

    Keywords: Weighted Ensemble Clustering, Unsupervised Learning, HGPA, CSPA, AD
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال