به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « quantum-dot cellular automata » در نشریات گروه « فنی و مهندسی »

  • حمیدرضا صدر ارحامی، سید محمدعلی زنجانی*، مهدی دولتشاهی، بهرنگ برکتین

    با طراحی مدارها در ابعاد نانو و مشاهده مشکلات فناوری CMOS، طراحان به دنبال جایگزین های مناسب برای این فناوری هستند. آتاماتای سلولی کوانتومی QCA، یکی از این فناوری های پیشنهادی است که باتوجه به سرعت بالا و توان مصرفی پایین، توجه محققان را به خود جلب کرده است. از طرفی، روش ورودی انتشار گیت GDI یک روش بهبود توان و مساحت اشغالی است که با استفاده از تعداد ترانزیستور کمتر، منجر به سرعت بیشتر، اتلاف توان کم تر و کاهش پیچیدگی در توابع بولی شده است. همچنین جمع کننده به عنوان مدار محاسباتی پایه در طراحی سامانه های دیجیتال از اهمیت ویژه ای برخوردار است. در این مقاله، یک مدار نیم جمع کننده، یک مدار نیم تفریق کننده و سه مدار جمع کننده جدید در فناوری QCA و به کمک بلوک GDI بهبودیافته، طراحی شده است. شبیه سازی این مدارها با استفاده از نرم افزار QCADesigner و در فناوری 18 نانومتر مزیت های استفاده هم زمان از فناوری QCA و روش GDI به صورت هم زمان را نشان می دهد. نتایج حاصل از مقایسه و ارزیابی مدارهای پیشنهادی نسبت به بهترین جمع کننده موجود، بیانگر کاهش تا حدود 55% در مساحت اشغالی، کاهش محسوس تعداد سلول ها و تاخیری برابر و یا کمتر تا 28% نسبت به کارهای موجود است.

    کلید واژگان: آتاماتای سلولی کوانتومی, سامانه های کم مصرف, تکنیک انتشار پایانه ورودی, تمام جمع کننده}
    Hamidreza Sadrarhami, Sayed Mohammadali Zanjani*, Mehdi Dolatshahi, Behrang Barekatain

    With the design of circuits at the nano-scale and observation of the problems of CMOS technology, designers are seeking suitable alternatives for this technology. Quantum-dot Cellular Automata (QCA) is one of these proposed technologies, which has attracted researchers' attention due to its high speed and low power consumption. On the other hand, the Gate Diffusion Input (GDI) method is an approach to improve power and area efficiency, which has led to higher speed, less power loss, and reduced complexity in Boolean functions through the use of fewer transistors. Furthermore, the adder, as a fundamental computational circuit in the design of digital systems, is of special importance. In this paper, a half-adder circuit, a half-subtractor circuit, and three new adder circuits in QCA technology have been designed and improved with the help of the GDI block. Simulation of these circuits using the QCADesigner software in 18-nanometer technology demonstrates the advantages of simultaneously using QCA technology and the GDI method. The results of the comparison and evaluation of the proposed circuits relative to the best existing adder indicate a reduction of about 55% in the occupied area, a significant decrease in the number of cells, and a delay that is equal to or less than 28% compared to existing works.

    Keywords: Quantum-Dot Cellular Automata, Gate Diffusion Input, Low Power, Nanotechnology, Full Adder}
  • حمیدرضا صدر ارحامی، سید محمدعلی زنجانی*، مهدی دولتشاهی، بهرنگ برکتین

    آتوماتای سلولی نقطه کوانتومی (QCA) یک فناوری جدید با سرعت بالا، مصرف توان کم، چگالی بالا و پیچیدگی پایین نسبت به فناوری های قدیمی مانند نیم رسانای اکسید-فلز مکمل (CMOS) است. از طرفی، روش ورودی انتشارگیت (GDI)، یک روش موفق در سامانه های کم مصرف است. این روش باعث کاهش پیچیدگی، کاهش مساحت و کاهش میزان مصرف انرژی در مدارهای طراحی شده با این روش است. این روش، اجرای طیف گسترده ای از توابع منطقی پیچیده را تنها با استفاده از دو ترانزیستور به عنوان بلوک اصلی، امکان پذیر می کند. در این مقاله، بلوک GDI مبتنی بر QCA تنها با 11 سلول پیشنهاد شده که به عنوان واحد طراحی استاندارد، قادر به اجرای توابع اساسی مانند AND، OR، NOT، BUFFER، MUX و XOR برای پیاده سازی مدارهای دیجیتال است. نتایج شبیه سازی توابع، توسط نرم افزار QCADesigner در فناوری 18 نانومتر، نشان دهنده عملکرد بهتر سلول هم سطح پیشنهادی است؛ به نحوی که سلول پیشنهادی، 1 سیکل ساعت تاخیر برای اجرای عملکردها دارد. همچنین تحلیل میزان مصرف انرژی و توان مصرفی مدارهای طراحی شده توسط نرم افزار QCADesigner انجام شده است. 31 درصد کاهش در تعداد سلول ها، 50 درصد کاهش در سطح و 17 درصد کاهش در اتلاف انرژی کل از مزایای طرح پیشنهادی نسبت به طرح های پیشین است.

    کلید واژگان: آتوماتای سلولی نقطه کوانتومی, توان پایین, فناوری نانو, قطبش, ورودی انتشارگیت}
    Hamidreza Sadrarhamii, Sayed Mohammadali Zanjani *, Mehdi Dolatshahi, Behrang Barekatain

    Quantum-dot cellular automata (QCA) is a modern technology, which has higher speed, lower power consumption, higher density, and lower complexity than conventional technologies, such as CMOS. Moreover, the gate diffusion input (GDI) technique has been successful in reducing complexity, area, and energy consumption in low-power circuit designs. In this technique, a wide range of complex logic functions can be implemented using only two transistors as the main block. In this study, a QCA-based GDI block is proposed using only 11 cells as a standard design unit that can be used to implement basic functions such as AND, OR, MUX, BUFFER, NOT and XOR in digital circuits. QCADesigner simulations of the functions in 18 nm technology indicate the superior performance of the proposed block with only one clock cycle delay in performing the operations. Moreover, the power consumption analysis of the designed circuits is performed using QCADesigner. The advantages of the proposed circuit compared to previous designs are 31% reduction in cell count, 50% smaller surface area, and 17% reduction in total energy loss.

    Keywords: gate diffusion input, Low power, nanotechnology, polarization, Quantum-dot cellular Automata}
  • G. Asadi Ghiasvand, M. Zare *, M. Mahdavi
    Background and Objectives
    Quantum-dot Cellular Automata technology is a new method for digital circuits and systems designs. This method can be attractive for researchers due to its special features such as power consumption, high calculation speed and small dimensions.
    Methods
    This paper tries to design a three-bits counter with minimum area and delay among the other circuits. As the circuit dimensions are reduced, the area and consequently, the delay are decreased, too. Therefore, this paper tries to design a three-bits counter with minimum dimensions and delay. The proposed counter contains 96 cells and is designed in three layers. It has the least area and delay compared to the priors.
    Results
    The circuit simulation illustrates 0.08 µm2 of area occupation and one clock cycle delay. In comparison with the best previous design, which includes 110 cells, the cells number, area and delay are decreased by 12.72%, 27.27% and 33.33%, respectively. Also, the cost of the circuit has been improved by 54.32%. The power analysis of the design shows 13% reduction in the total energy dissipation of the circuit compared to the best prior work. The circuit reliability versus temperature variations has been simulated and the results represent suitable stability. The fault tolerance of the circuit which is occurred by the displacement faults represents normal operation of the circuit.
    Conclusion
    As the counter is an element which is implemented in several digital systems, its area reduction causes the whole system area to be reduced. Also, the circuit delay has been decreased significantly which means that the circuit can be employed by high speed systems.
    Keywords: Digital circuit design, Quantum-Dot-Cellular Automata, Multi-layers design, Three Bits Counter}
  • فرزانه جهانشاهی جواران، سمیه جعفرعلی جاسبی، حسین خادم الحسینی*، راضیه فرازکیش
    آتوماتای سلولی کوانتومی (QCA) نوعی فن آوری محاسباتی است که جهت ساخت مدارهایی در ابعاد نانو به کار برده می شود. با کاهش ابعاد قطعات، حساسیت مدار بیشتر شده و مدارهای کوانتومی نسبت به وقوع عیوب و تشعشعات محیط آسیب پذیرتر هستند. دو دروازه پایه در این فن آوری دروازه معکوس کننده و دروازه اکثریت هستند که بیشتر مدارها بر پایه این دو ساخته می شوند. در این مقاله دروازه اکثریت هفت ورودی در QCA طراحی می شود، به گونه ای که حداقل سربار به مدار تحمیل شود. استفاده از دروازه اکثریت با ورودی های بیشتر باعث کاهش تعداد سلول ها، تاخیر و پیچیدگی در مدار QCA می شود. هرچند شاید ضرورت استفاده از دروازه هفت ورودی هنوز چندان احساس نمی شود. گیت پیشنهادی در این مقاله با 19سلول کوانتومی در فضای اشغالی 24564 نانومتر مربع در یک لایه و با یک فاز کلاک طراحی شده است. سپس تعدادی از دروازه های منطقی از جمله دروازه های منطقی "و" و"یا" چهار ورودی، دروازه "نقیض یای انحصاری" و "یای انحصاری" دو ورودی، دروازه"یای انحصاری" سه ورودی و تمام جمع کننده چند بیتی را با استفاده از دروازه هفت ورودی پیشنهادی طراحی و پیاده سازی می شود. جمع کننده پیشنهادی با دروازه اکثریت هفت ورودی و یک دروازه اکثریت سه ورودی تحمل پذیر اشکال، طراحی شده است. پس می توان گفت که جمع کننده طراحی شده تا حدودی تحمل پذیر اشکال است یعنی در برابر خطاهایی که در این فن آوری رخ می دهد تا حدودی تحمل پذیر است. سپس از نرم افزار QCAPro برای تجزیه و تحلیل توان مصرفی دروازه پیشنهادی استفاده شده و در ادامه عملکرد مدار با استفاده از نرم افزار شبیه ساز آتوماتای سلولی کوانتومی QCADesigner 2.0.3 مورد ارزیابی قرار گرفته است.
    کلید واژگان: آتوماتای سلولی کوانتومی, تحمل پذیری اشکال, دروازه اکثریت هفت ورودی, نانو الکترونیک, نرم افزار شبیه ساز}
    Farzaneh Jahanshahi Javaran, Somayyeh Jafarali Jassbi, Hossein Khademolhosseini *, Razieh Farazkish
    The quantum-dot cellular automata (QCA) technology is a computational technology used to build nano-scale circuits. When the dimensions of the components decrease, the sensitivity of the circuit increases and the quantum circuits become more vulnerable to the occurrence of defects and radiation in the environment. The two major gates in this technology are inverter and majority gates, and most circuits are built based on these two gates. This paper aimed to design a seven-input majority gate in quantum-dot cellular automata by imposing low overhead on the circuit. Using a majority gate with more inputs reduces cell count, latency, and complexity in the QCA circuit. However, perhaps the need to use the seven-input gate is not yet felt we then design and implement a number of logic circuits. A new 7-input majority gate is designed in this paper, with 19 cells. The proposed structure is single-layer with an occupied area of 24564 nm2 that produces the correct output in one clock phase, then a four-input AND gate, a four-input OR gate, a two-input XOR gate, a two-input XNOR, a three-input XOR gate and a full adder are implemented using the designed seven-input gate. Including all multi-bit full adders, using the proposed seven-input gate. The proposed full adder is designed by the seven-input majority gate proposed and a fault-tolerant three-input majority gate. Therefore, it can be said that the designed full adder is somewhat tolerable, that means, it is somewhat tolerable against the fault that occur in this technology. QCAPro software is used to analyze the energy consumption of the recommended structure. Then, the circuit performance is evaluated using QCADesigner 2.0.3 simulator software for quantum-dot cellular automata.
    Keywords: Fault tolerance, Nano-electronics, Quantum-dot cellular Automata, seven-input Majority Gate, simulator software}
  • F. Fouladinia, M. Gholami

    Nowadays Quantum-dot Cellular Automata (QCA) is one of the new technologies in nanoscale which can be used in future circuits. Most digital circuits are implemented with CMOS technology, but CMOS has some problems like power consumption and circuit size. So, for solving these problems a new method (QCA) is presented. It is clear that converters play a crucial role in the digital world. So, due to the aforementioned point, in this paper, two digital code converters, containing an excess-3 to decimal, and a decimal to excess-3 code converter are presented. The tile method is used to design proposed circuits in quantum-dot cellular automata (QCA) nanotechnology. The tile method gives a unique block for the majority and NOT gates. This property facilitates integration. Both of the proposed code converters have 1.75 clock cycles delay and have an energy dissipation of about 100meV. In the excess-3 code to decimal converter, 516 cells are used, which occupy an area equal to 0.43µm2 also in the decimal to excess-3 code converter. 321 cells are used, which occupy an area equal to 0.28 µm2.

    Keywords: Quantum-dot Cellular Automata, Excess-3, Decimal, Energy Dissipation, Nanotechnology}
  • سمیه جعفرعلی جاسبی، فرزانه جهانشاهی جواران، حسین خادم الحسینی*، امیر صباغ ملاحسینی

    اتوماتای سلولی کوانتومی یک تکنولوژی جدید جهت پیاده سازی گیت های منطقی و مدارهای دیجیتال در مقیاس نانو است. با کاهش ابعاد قطعات، حساسیت مدار بیشتر شده و مدارهای کوانتومی نسبت به عوامل نامساعد محیط آسیب پذیرتر هستند. با توجه به اهمیت طراحی مدارات تحمل پذیر اشکال، در این مقاله به ارایه یک گیت اکثریت پنج ورودی با ویژگی تحمل پذیری اشکال در تکنولوژی اتوماتای سلولی کوانتومی می پردازیم و تمام اشکال های ممکن در پروسه جایگذاری سلول ها در مکان های خاصی در روی سطح را مورد ارزیابی قرار می دهیم. این اشکال ها شامل جابجایی، حذف، چرخش و سلول اضافه می باشند. در گام نخست به گیت مورد بررسی چهار نوع اشکال ذکر شده اعمال گردیده و در گام بعدی صحت عملکرد مدار با موتور شبیه ساز QCADesigner مورد ارزیابی قرار داده می شود . برای یافتن چنین گیت اکثریتی روش های مختلفی از جمله روش افزودن سلول (که همان تزریق افزونگی به مدار است) و روش چینش خاص سلول ها مورد آزمایش قرار می گیرد. سعی بر این است که طرحی یافت شود که حتی الامکان تنها باچینش خاص سلول ها توانایی مقاومت در برابر نقص های احتمالی را داشته باشد به گونه ای که حداقل سربار به مدار جهت تحمل پذیری اشکال تحمیل شود . نتایج نشان می دهد که گیت اکثریت معرفی شده در مقایسه با موارد مشابه از برتری قابل توجهی برخوردار است.

    کلید واژگان: تکنولوژی اتوماتای سلولی کوانتومی, نانو الکترونیک, تحمل پذیری اشکال و گیت اکثریت}
    Somayyeh Jafarali Jassbi, Farzaneh Jahanshahi Javaran, Hossein Khademolhosseini*, Amir Sabbagh Molahosseini

    Quantum-dot cellular automaton is a new technology for implementation of logic gates and digital circuits at nanoscale. By reducing size of the components, sensitivity of circuit increases and quantum circuits become more vulnerable to adverse environmental factors. Due to the importance of designing fault tolerant circuits, this paper presents a five-input majority gate with fault tolerance characteristic in quantum cellular automata technology. All possible faults which may occur during the process of placing cells in specific locations on the surface including displacement, deletion, rotation, and extra cell are evaluated.  In the first step, all the four types of faults are applied to the gate and the next step is to evaluate the accuracy of the gate performance with the QCADesigner simulator. In order to find such a majority gate, different methods, including the method of adding cells (the injection of redundancy to the gate) and the specific arrangement of cells are utilized. The latter method is being used more, hence, low overhead is added to the design.  The results confirm the superiority of the proposed gate over the other previously offered designs.

    Keywords: Quantum-dot Cellular Automata, Nano-electronics, Fault Tolerance, Majority Gate, QCADesigner}
  • Mohammad Gholami *, Zarei Sanaz

    Quantum-dot Cellular Automata (QCA) is one of the new nanoscale technologies which proposed for future circuits. This technology has been remarkable due to its faster speed, lower size and reduction in power consumption compared to CMOS technology. Many circuits have been implemented in this technology including shift registers, they are one of the most important digital circuits for many applications. With the development of QCA technology, it is important to provide testing methods for testing these circuits.4-Bit serial shift registers designed in previous research were not capable of testing their output. In this paper, MUXED-D scan cell concept helps to detect the errors before fabrication and reduce time and cost. The MUXED-D scan consists of a D flip-flop and a 2to1 multiplexer. Compared to the latest scan cell, we have seen a 25 % decrease in occupied area and 15.62 % decrease in the number of cells and latency from 1 to 0.75 clock cycle. In general, this scan cell circuit is made of 27 cells with an area of 0.03 µm2 and a latency of 3 clock cycles. The proposed shift register includes four scan cells with two inputs which includes main and test signals. In fact, the number of cells used for the last 4-bit serial testable shift register in this design is 324, 0.39µm2 occupied area and the corresponding delay is 6.75 clock cycles. In order to verify this performance, QCA simulator is used

    Keywords: MUXED-D scan cell, Nanotechnology, Quantum-dot Cellular Automata, Shift register}
  • Ratna Chakrabarty *

    Quantum Dot Cellular Automata or QCA is a promising transistor less nano-technology that is growing in popularity and it has the capability to replace the ubiquitous CMOS technology in the VLSI domain. The paper discussed the simple design of single bit comparator circuit using QCA. A single-bit comparator circuit compares its two inputs and indicates which one is larger or are they both equal. This paper has focused on creating an area efficient QCA comparator circuit and a comparative study of area consumption with the previously made designs. The designed comparator circuit is the most area-efficient design as it is made up of minimum possible number of cells. A Comparator is used in equality testers and many other digital communications The circuit proposed in this paper is a three layered circuit which can alternatively be used to realize the basic logic gates. The circuit can also be used as an alternative to the majority and universal gates in QCA.

    Keywords: Quantum-dot Cellular Automata, Comparator, Majority Voter, Kink Energy}
  • Fatemeh Kiayi, Behnaz Gharekhanlou *, Alireza Kashaninya
    Over the years, the design and implementation of fault-tolerant circuits have been one of the main concerns of the designers of electronic devices. Quantum Dot Cellular Automata (QCA) is a low-power, compact technology that is prone to various defects due to its small size. We can categorize these defects into three main groups: operational defects, manufacturing defects, and clocking defects. Using redundant cells, fault-tolerant gates, or changing the structure of the gates can improve the overall fault-tolerance of the circuit in some cases. However, increasing the fault-tolerance would lead to an increase in the occupied area and the delay of the gates. Therefore, designing a gate based on intercellular interactions with a minimum number of cells and maximum efficiency, which is also fault-tolerant, is a challenging task. In this paper, we present a new tile-shaped design for XOR and XNOR gates that is robust to the Missing cell, Extra cell, and Rotated cell defects by 25%, 55%, and 25%, respectively. That is why we call these gates TFXOR and TFXNOR, respectively.
    Keywords: Quantum-dot cellular Automata, Fault-tolerant XOR gate, Fault-tolerant XNOR gate, Tile-shaped Fault-tolerant XOR, Tile-shaped Fault-tolerant XNOR}
  • H. Alamdar, G. Ardeshir, M. Gholami *
    The process of reducing dimensions in CMOS technology and also making digital devices more portable, faces serious challenges such as increasing frequency and reducing power consumption. For this reason, scientists are looking for a solution such as replacing CMOS technology with other technologies including Quantum-dot Cellular Automata (QCA) technology and many researches have designed digital circuits by using QCA technology. Flip-flops are one of the main blocks in most digital circuits. In this paper, a D-type flip-flop (D-FF) is presented in QCA technology that a majority gate has been used in its feedback path to reset. The D-FF is designed by the proposed D Latch which is based on Nand-Nor-Inverter (NNI) and a new inverter gate that the proposed D latch has 24 cells and 0.5 clock cycle latency and 0.02 〖μm〗^2 area. The new inverter gate of the D-FF has output signal with high polarization level and lower area than previous inverters and the NNI gate of the D-FF is a universal gate. One of the applications of D-FFs with reset pin is the use in Phase-frequency detector (PFD). In the proposed scheme, a reset feature has been added to D-FF since the PFD structure can be designed. All of the proposed schemes are evaluated by the QCADesigner software and energy consumption simulations are estimated using QCAPro software for all proposed circuits.
    Keywords: Quantum-dot Cellular Automata, QCA, flip-flop, latch, PFD}
  • Z. Amirzadeh, M. Gholami *
    One of the major problems in designing highly compact integrated circuits is the power consumption of the circuits. Therefore, several technologies have been introduced to overcome the problems facing MOSFET technology. One of these technologies is the Quantum-Dot Cellular Atomata (QCA), which has several advantages. In this paper, we focus on computational logic gates based on the T-Latch circuit. T-latch is the basis of many circuit in arithmetic logic unit (ALU). The proposed structure for T-latch has a lower number of cells, occupied area and lower power consumption than existing methods. In the proposed T-Latch, compared to previous best designs, 6.45% cross section area and 44.49% power consumption were reduced. Also in this paper, for the first time a T-latch with reset terminal and a T-Latch with both set and reset terminals were designed. In addition, using the proposed T-latch, a 3-bit bidirectional up-down counter which consists of 204 quantum cells, 0.26 µm2 cross-sectional area, delay of 5.25 clock cycles, a three-bit up-down counter with a reset pin and a three-bit up-down counter with set and reset terminals were made. The proposed up-down circuits are designed for the first time in QCA technology. All the design and simulation results are done in QCADesigner software.
    Keywords: Quantum-dot Cellular Automata, Counter, Bidirectional Counter}
  • جلال رستمی منفرد، سید عبدالمجید موسوی*

    یکی از ایده های امیدبخش برای جایگزینی CMOS در مقیاس نانو ایده اتوماتای سلولی کوانتومی (QCA) است. بر این اساس، انواع مختلفی از مدارات الکترونیکی و منطقی طراحی و ارایه شده است که اساس طراحی آن ها گیت های اکثریت و اینورتر می باشد. در همین راستا، در کار پیش رو یک روش بهینه سازی موثر برای کاهش تعداد گیت های اکثریت و اینورتر در مدارات QCA چند ورودی-چند خروجی ارایه خواهد شد. روش پیشنهادی مبتنی بر برنامه نویسی ژنتیک کارتزین (Cartesian Genetic Programming) بوده که در آن مدار QCA به صورت دنباله ای از اعداد صحیح به عنوان ژنوتیپ (genotype) کد خواهد شد تا با اجرای برنامه، فنوتیپ (phenotype) بهینه با تعداد گیت ها، نوع گیت ها و اتصالات بهینه در خروجی حاصل شود. در ادامه و برای راستی آزمایی، روش پیشنهادی روی 27 تابع منطقی پیاده سازی شده و نتایج گزارش خواهد شد. نتایج آزمون ها حاکی از آن است که روش پیشنهادی در مقایسه با روش های طراحی رقیب در یافتن جواب با کمترین تعداد گیت عملکرد بهتری دارد. بر این اساس، انتظار می رود با استفاده از این روش علاوه بر تعداد گیت کمتر، مدارهای QCA با سطح اشغالی و تاخیر کمتر طراحی شوند.

    کلید واژگان: اتوماتای سلولی کوانتومی, برنامه نویسی ژنتیک کارتزین, بهینه سازی, مدارات کوانتومی, گیت اکثریت و اینورتر}
    J. Rostami Monfared, A. Mousavi *

    One of the promising ideas to improve over CMOS constrains in the nano-scales is Quantum Cellular Automata (QCA). So far, a variety of logic circuits are designed based on QCA where usually the majority and the inverter gates are the basic building blocks from which more complicated circuits are developed. In this paper, first we propose an approach to minimize the number of the majority and inverter gates in a given circuit with multiple inputs/outputs (MIMO). In our proposal, which is based on Cartesian Genetic Programming (CGP), a QCA circuit is coded as a series of integer numbers that constitutes a genotype for CGP. Applying CGP operators then, outputs the optimum phenotype including the number and the type of gates along with their interconnections. As for the verification of this approach, we apply it to 27 logic circuits and the results are reported, which show better solutions (in majority of cases) compared to the competing approaches. In addition to a fewer number of gates, our approach may provide a way to design QCA circuits with less power dissipation and/or less occupied areas.

    Keywords: Quantum dot cellular automata, cartesian genetic programming, optimization, quantum circuits, majority, inverter gates}
  • رضا بینایی، محمد غلامی*

    تکنولوژی اتوماتای سلولی نقطه ای کوانتومی یک راهکار جایگزین برای غلبه بر محدودیتهای حاکم بر تکنولوژی CMOS است. در این مقاله، یک ساختار جدید برای لچ نوع D در تکنولوژی اتوماتای سلولی نقطه ای کوانتومی که دارای پایه های نشاندن و بازنشانی است، ارایه شده است. ساختار پیشنهادی علیرغم داشتن پایه های نشاندن و بازنشاندن، تنها دارای 35 سلول کوانتومی، تاخیری معادل با نیم سیکل کلاک و  سطح مقطع اشغالی برابر با 39204 نانومترمربع است. سپس از این ساختار برای پیاده سازی فلیپ فلاپهای نوع D دارای پایه های نشاندن و بازنشاندن حساس به لبه بالارونده، پایین رونده و هر دو لبه استفاده شده است. به عنوان نمونه ساختار پیشنهادی فلیپ فلاپ نوع D حساس به لبه بالا رونده با پایه های نشاندن و بازنشانی دارای 55 سلول کوانتومی، تاخیر 75/0 سیکل کلاک و سطح مقطع اشغالی 61404 نانومترمربع است. در ادامه جهت اثبات صحت رفتاری مدار پیشنهادی در مدارهای پیچیده تر، این ساختارها در قالب آشکارساز فاز-فرکانس، تقسیم کننده فرکانسی و شمارنده مورد استفاده قرار گرفته است. برای ساختارهای پیشنهادی شبیه سازی پارامترهای توان نیز صورت گرفته است.

    کلید واژگان: اتوماتای سلولی نقطه ای کوانتومی, تاخیر, لچ, فلیپ فلاپ, آشکارساز فاز-فرکانس, شمارنده}
    Reza Binaei, Mohammad Gholami*

    Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of ​​39204 nm2. Then, this structure has been used to implement D-type flip-flops that are sensitive to the rising, falling, and both edges. For example, the proposed structure of the rising edge D-type flip-flop has a 55 quantum cells with a delay of 0.75 clock cycles and an occupied area of ​​61404 nm2. In order to prove the proposed circuit behavior in more complex circuits, these structures have been used in the form of phase-frequency detectors, frequency dividers, and counters. Simulation of power parameters has been done for proposed structures.

    Keywords: Quantum-dot cellular automata, Delay, Latch, Flip-Flop, Phase-Frequency Detector, Counter}
  • M. Gholami *, R. Binaei, M. Gholamnia Roshan
    The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occupies very little area. Phase-locked loops (PLLs) and delay-locked loops (DLLs) are blocks that are commonly used in telecommunication applications. One of the most important parts in DLL and PLL is the phase-frequency detector. Therefore, the design of this circuit in QCA technology is of great importance. In this paper, two new phase-frequency detectors sensitive to falling and rising edge have been introduced in QCA technology. Both of the designs are composed of 104 cells; occupy only 0.13 μm2 of an area and 1.5 QCA clock cycles latency. The designs are in one layer and all the inputs and outputs are available to be used by another circuit.
    Keywords: Quantum Cellular Automata, Quantum-dot Cellular Automata, Phase-frequency Detector, Phase detector, Power Consumption}
  • Somayyeh Jafarali Jassbi, Farzaneh Jahanshahi Javaran, Hossein Khademolhosseini *, Amir Sabbagh Molahosseini
    QCA is a kind of computational technology used for developing circuits in Nano sizes. Decreasing the dimensions of pieces has led to the increase of circuit sensibility and quantum circuits are more vulnerable to defects and radiations of the environment. Majority gate and NOT gate (inverter) are the two basic gates in QCA technology based on which almost all circuits are made. So far, a limited number of fault-tolerant majority gates have been presented and research in this particular field seems appropriate. In this research we intend to provide a comprehensive design of 3-input majority gate in quantum cellular automata for all possible faults: misalignment, missing, dislocation, and redundancy so that low overhead is added to circuit. The gate is made up of both 90-degree and 45-degree cells. The results of this study indicate that our proposed 3-input majority gate is more fault-tolerant to the defects compared to the formerly presented one.
    Keywords: Nano-electronics, Quantum-dot cellular Automata, Majority gate, Fault tolerance}
  • Razieh Farazkish *, Mani Zarei

    This paper explains fault tolerance techniques for Quantum-dot cellular automata which offer remarkable robustness to implement QCA arithmetic circuits. It begins with a study of QCA based design. A classification for fault types is presented and some fault tolerance techniques are examined and their relevance for QCA circuits is evaluated. Finally, it is concluded that a combination of two or more hardware redundancy techniques is needed for tolerating faults in QCA circuits and systems. The proper functionality of the presented design is checked by computer simulations using the QCADesigner tool. Simulation results confirm our claims and their usefulness in designing robust digital circuits.

    Keywords: Quantum-dot cellular Automata, Nanoscale circuits, Fault tolerance, Hardware redundancy}
  • سعید سیدی، نیما جعفری نویمی پور*

    فناوری اکسید فلز نیمه هادی مکمل یک روش محبوب و فراگیر در طراحی مدارات الکترونیکی و دیجیتالی است. ولی در این فناوری، کاهش در سطح زیر میکرون به سادگی امکان پذیر نیست؛ بدین دلیل فناوری آتوماتای سلولی کوانتومی نقطه ای در سطح نانو به عنوان یک فناوری پیشتاز درزمینه نانو و روشی جدید جهت طراحی مدارات دیجیتال و کاهش توان مصرفی معرفی گردید. آتوماتای سلولی کوانتومی نقطه ای در سطح نانو یک روش جدید برای انجام محاسبات با انتقال اطلاعات از طریق اندرکنش سلول های کوانتومی را بیان می کند. ابعاد کوچک، سرعت بالا، توان مصرفی پایین و تاخیر کم از ویژگی های اصلی این فناوری است. طراحی مدارات ایمن با امنیت بالا در فناوری آتوماتای سلولی کوانتومی نقطه ای در سطح نانو با در نظر گرفتن ارتباطات بین سلولی و مصرف توان کم، فضای مصرفی بهینه، برای طراحان امری بسیار مهم و حایز اهمیت است. لذا، در این مقاله ابتدا آتوماتای سلولی کوانتومی نقطه ای در سطح نانو شرح داده شده است و سپس سلول های کوانتومی، ساختارهای مهم در این فناوری، مبحث زمان بندی و نکات مهم در مدارات آتوماتای سلولی کوانتومی نقطه ای در سطح نانو مطرح گردیده است و درنهایت مروری بر پژوهش های ارایه شده درزمینه امنیت نظیر مدار رمزنگاری در ارتباط بین مدارات در فناوری آتوماتای سلولی کوانتومی نقطه ای در سطح نانو صورت گرفته است. درنهایت ساختارها، مدارات و صحت عملکرد آن ها مورد تحلیل و بررسی قرارگرفته است. نتایج حاصل نشان می دهد که می توان با روش هایی همچون طراحی مدار با دروازه Abtash، استفاده از منطق برگشت پذیر در دروازه فینمن، کلید برگشت پذیر با مدار فردکین و پیاده سازی فرآیند رمز گزاری رمزگشایی، امنیت و قابلیت اطمینان به مدارات در ارتباطات نانو بر اساس آتوماتای سلولی کوانتومی نقطه ای در سطح نانو را افزایش داد.

    کلید واژگان: امنیت, آتوماتای سلولی کوانتومی نقطه ای, نانو فناوری, ارتباطات بر اساس نانو}

    Semiconductor metal oxide technology complements a popular and pervasive approach in the design of electronic and digital circuits, but in this technology, reduction at the sub-micron level is simply not feasible; therefore, quantum-dot cellular automata nanotechnology as a new way to design digital circuits and reduce power consumption was introduced. At the nanoscale, quantum-dot cellular automata cells represent a novel way of performing calculations by transmitting information through quantum cell interactions. Small dimensions, high speed, low power consumption, and low latency are the main features of this technology. Designing high-security circuits in nano-scale quantum-dot cellular automata technology is important for designers, considering the intercellular communication, low power consumption, and optimal power consumption. Therefore, this paper first describes the quantum-dot cellular automata at the nano level and then quantum cells, then important structures in this technology, timing and important points in the quantum-dot cellular automata circuit have been discussed and reviewed. In the field of security, such as cryptographic circuits, interconnections have been made at the nanotechnology of quantum-dot cellular automata technology. Finally, their structures, circuits, and performance are analyzed. The results showed that by applying some methods such as Feynman gate reversible logic, Fredkin circuit reversible key and decoding encoding process, the safety and reliability of nano-communications based on quantum-dot cellular automata technology can be increased.

    Keywords: Security, Quantum-dot cellular automata, Nano-Technology, Nano-based Communication}
  • Davoud Bahrepour *, Negin Maroufi
    In recent years, reduction of the complementary metal-oxide-semiconductor (CMOS) circuit feature size has caused significant challenges, such as current loss and leakage, and high power consumption. Therefore, further reduction of the size of CMOS technology is not feasible. Quantum-dot cellular automata (QCA) is an emerging technology at the nanoscale, which can utilize for designing computers and very-large-scale integration (VLSI) circuits in the near future. QCA technology makes it possible to design low-power, high-performance, and area-efficient logical circuits. A comparator function is a digital logical function, which compares whether a bit is greater than, smaller than or equal to the other bit or not (half comparator). Full comparator has a third input, which shows the result of the previous step. Half and full comparators play an essential role in CPU architecture. In this paper, a full comparator circuit based on the QCA and a new quantum cost function is proposed. Besides a 2-bit comparator is presented based on the introduced full comparator. Using the new quantum cost function the proposed full comparator design is compared with the previously presented designs in terms of area, delay, and complexity. Comparisons show that the proposed design has less area and delay and therefore, it is more suitable for utilizing in CPU design.
    Keywords: Quantum-Dot Cellular Automata, Full Comparator, Cost Function, QCA Cell, Majority Gate, NOT Gate}
  • S. Kassa *, S. Nema
    This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% and 15% improvement in terms of total number of Cell counts and Area. Similarly, the proposed design structure realizes the overall power dissipation savings up to 35.3% at maximum energy dissipation of circuit, 38.6% at average energy dissipation of circuit, 36.1% at minimum energy dissipation of circuit, 36.4% at average energy dissipation of circuit and 40.1% at average switching energy dissipation compared to the latest reported designs. The power analysis and structural analysis of the proposed design is compared with its state-of-the-art counterpart designs, using QCAPro and QCADesigner 2.0.3 tools. The proposed QCA based SRAM cell design can be taken as a base design in building an ultra-low power information generating systems like Microprocessors.
    Keywords: Quantum-dot Cellular Automata, inverter, Majority Gate, Static Random Access Memory}
  • Mohsen Yoosefi Nejad, Mohammad Mosleh
    Quantum-dot Cellular Automata (QCA), is a contemporary nanotechnology for manufacturing logical circuits which brings less power consumption, smaller circuit size, and faster operation. In this technology, logical gates are composed of nano-scale basic components called cells. Each cell consists of four quantum-dot arranged in a square pattern. Diagonal arrangement of two extra electrons resembles two logical states 0 and 1. Majority gate and inverter gate are considered as the two most fundamental building blocks of QCA. The effect of cells on their neighbor cells enables designing more diverse circuits. Multiplexer is a key component in most computer circuits. Researchers have presented various QCA designs for multiplexers since the introduction of QCA. In this research all presented designs are simulated in QCA Designer Version 2.0.3 and investigated from different aspects such as number of cells, size, types of components used in circuit, number of layers, and number of cycles for producing output.
    Keywords: QCA, Mltiplexer, MUX, Quantum-dot Cellular Automata, Majority Gate, Simulation, Digital Circuit}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال