جستجوی مقالات مرتبط با کلیدواژه "uncertainty modeling" در نشریات گروه "فنی و مهندسی"
-
در این مقاله بهره برداری شبکه های الکتریکی، حرارتی و گازی در حضور هاب های انرژی منعطف شرکت کننده در بازار انرژی روز فروش مبتنی بر مدل تسویه قیمت بازار ارایه می شود. این طرح بیشینه سازی اختلاف سود هاب های انرژی و هزینه بهره برداری واحدهای تولید مقید به مدل بهره برداری منابع، ذخیره سازها و بارهای پاسخ گو در قالب هاب، محدودیت انعطاف پذیری هاب ها و مدل پخش توان بهینه شبکه های انرژی اشاره دارد. این فرمول بندی مبنی بر مدل تسویه قیمت بازار است؛ به طوری که قیمت انرژی را متناظر با تعادل تولید و مصرف در باس های مختلف شبکه های انرژی به دست می آورد. روش تابع جریمه نیز در این مقاله به منظور محاسبه همزمان متغیرهای اصلی و متغیرهای دوگان (قیمت انرژی) استفاده می شود. در ادامه از بهینه سازی تصادفی برای مدل سازی عدم قطعیت های بار و توان تجدیدپذیر استفاده می گردد. درنهایت نتایج عددی به دست آمده بیانگر قابلیت طرح پیشنهادی در استخراج وضعیت بهینه انعطاف پذیری و اقتصادی برای هاب هاست. همچنین عملکرد بهینه هاب ها توانسته است که وضعیت اقتصادی و بهره برداری شبکه های انرژی را نسبت به مطالعات پخش بار ارتقا دهد که با کاهش قیمت انرژی موجب افزایش رفاه اجتماعی می شود، به طوری که شرایط انعطاف پذیری 100% برای هاب ها به دست می آید. در این شرایط هزینه بهره برداری، تلفات انرژی، افت ولتاژ و افت دما به ترتیب در حدود 8/19%، 1/7%، 5/19% و 7/16% نسبت به مطالعات پخش بار کاهش دارند که متناسب با افزایش 9/4% افت فشار در شبکه گازی در شرایط مذکور است.کلید واژگان: بازار انرژی, مدل تسویه قیمت بازار, هاب انرژی منعطف, رفاه اجتماعی, مدل سازی عدم قطعیت هاIn this paper, the operation of electrical, heat and gas networks with flexible energy hubs is presented, where hubs is contributed in energy market that is based on market clearing price. This scheme maximizes the difference between energy hubs profit and operation cost of generation units subjected to operation model of sources, storages and responsible load in hub format, flexibility limits of hubs, and optimal power flow model of energy networks. This formulation is based on market clearing price model, so that it obtain value of energy price according to balancing between the generation and demand in different buses if energy networks. Penalty function method in this paper uses to calculate of primal variables and some dual variables (energy prices). In the following, the stochastic optimization uses to model the uncertainties of load and renewable power. Finally, the obtained numerical results show the capabilities of the proposed scheme in the improving flexibility and economic situations of hubs. Also, optimal operation of hubs is able to improve the economic and operation induces of energy networks in comparison to load flow study, and it improves the social welfare based on reducing of energy price. So that 100% flexibility condition obtains for Hubs. In this condition, the operation cost, energy loss, voltage drop and temperature drop are reduced about to 19.8%, 7.1%, 19.5% and 16.7%, respectively, with respect to load flow analysis, but the pressure drop increases about to 4.9%.Keywords: Energy market, market price settlement model, flexible energy hub, Social welfare, uncertainty modeling
-
International Journal of Industrial Electronics, Control and Optimization, Volume:5 Issue: 4, Autumn 2022, PP 304 -315Wind power has been considered a future alternative to fossil energy resources. However, due to its stochastic nature, the integration of wind power plants (WPPs) into power systems poses some reliability problems such as a mismatch between load profile and efficient wind power generation. This issue can be alleviated by considering the correlation between hourly load and wind speed variations in the planning phase. To this end, a reliability-based wind power planning procedure is proposed and formulated as a stochastic programming problem. The objective function is the minimization of total costs, including capital investment, operating and maintenance, and customer energy not served costs. A new hybrid method that combines features of the load-duration curve and the K-means clustering algorithm is proposed to model the uncertainty of the input data. A shuffled frog-leaping algorithm is used to solve the proposed model. The simulation results indicate that the amount of adaptation between hours with high loads and those with high wind speeds markedly affects the selection of wind sites as optimal locations for WPP installation. Considering this issue can also improve power system reliability in the presence of WPPs.Keywords: Power system reliability, Shuffled frog leaping algorithm, Uncertainty modeling, Wind power planning
-
The considerable development of the electricity market subjects in recent years has provided a complex and more competitive environment for the participants. Each participant in this environment adopts a special strategy to maximize its profit or minimize its energy costs considering the significant constraints. In this paper, a short term optimal scheduling of thermal units, hydropower units, wind turbines, and pumped storage units has been proposed based on the energy market guidelines. The main objective of this research is to minimize the thermal energy production costs considering the uncertainty parameters along with the maximum utilization of clean energy production in the system. In order to evaluate the research goals, IEEE 5-bus standard test system is selected as the case study, which is equipped with both conventional and clean energy resources. In addition, probabilistic behaviors related to energy demand and wind production have been considered. Results proved the effectiveness of this model in minimizing the energy cost of thermal units.
Keywords: Short Term Optimal Scheduling, Wind-Hydro-Thermal Power Plants, Clean Energy Production, Competitive Energy Market, Transmission System, Uncertainty Modeling -
در تحلیل امنیت سایبری، علاوه بر داده ها و اطلاعاتی که از حسگرهای ماشینی مانند سامانه های تشخیص نفوذ، دیواره های آتش و پویشگرهای آسیب پذیری به دست می آید (داده های سخت)، مشاهدات و برداشت های انسانی شامل گزارش های کاربران و مدیران شبکه از کارکرد عادی یا غیرعادی اجزای شبکه و تشخیص های صورت گرفته توسط تحلیلگرهای امنیتی از وضعیت امنیتی شبکه (داده های نرم) می تواند نقش مهمی در رسیدن به تخمین و تصمیم دقیق تر و مطمئن تر داشته باشد. ادغام داده های سخت و نرم در تحلیل امنیت سایبری دارای چالش هایی از قبیل طراحی چارچوب مدل سازی مسئله و نمایش انواع مختلف عدم قطعیت است. در این مقاله مدل جدیدی مبتنی بر هستان شناسی جهت ادغام داده های سخت و نرم به منظور به کارگیری در تحلیل امنیت سایبری ارائه می شود. در ابتدا مفاهیم و متغیرهای مسئله مدل می شوند و سپس با استفاده از مجموعه قواعد، استنتاج وضعیت امنیتی دارایی ها صورت می گیرد. همچنین مدل باور انتقال پذیر و قاعده ترکیب دمپستر-شفر برای مدل سازی یکپارچه عدم قطعیت و ادغام داده ها به کار گرفته شده است. نتایج به کارگیری مدل پیشنهادی در یک سناریوی نمونه از تحلیل امنیت سایبری، عملیاتی بودن آن را در ادغام داده های سخت و نرم سایبری نشان می دهد. انعطاف پذیری بالا و پویایی مدل با توجه به قابلیت توسعه هستان شناسی و پایگاه دانش، از ویژگی های مدل پیشنهادی است.
کلید واژگان: ادغام داده های سخت و نرم, مدل سازی عدم قطعیت, تحلیل امنیت سایبری, هستان شناسیIn Cyber Security Analysis, in addition to data and information obtained from machine-based sensors like intrusion detection systems, firewalls and vulnerability scanners (hard data), human observations and conclusions from world's state including problems reported by users and network administrators, and assessments made by security analysts about network security status (soft data), can be used to obtain more accurate and more reliable estimation and decision. Hard and soft data fusion in cyber security analysis has many challenges such as designing a proper framework for problem modeling and representation of different types of uncertainty. This paper presents a new model based on ontology to fusion of hard and soft data in cyber security analysis. First, the concepts and problem variables are modeled and then the inference about security status of assets is made by using set of rules. Also, to fusion of data and unified modeling of different uncertainties, transferable belief model (TBM) and Dempster-Shafer combination rule were used. Results of applying proposed model in a sample scenario of cyber security analysis show applicability of model for hard and soft data fusion.
Keywords: Hard, Soft Data Fusion, Uncertainty modeling, Cyber Security Analysis, Ontology -
مجله محیط و معدن، سال دهم شماره 4 (Autumn 2019)، صص 929 -945
رویکردهای سنتی مدل سازی و تخمین در کانسارهای عناصر نادر خاکی به برآورد نادرست منجر شده و مدیریت منبع را با چالش و ریسک مواجه می کند . عیار پایین در کانسارهای عناصر نادر خاکی کشور از یک سو و اهمیت استراتژیک آن ها ضرورت مدل سازی چندمتغیره عیار در این کانسارها را دوچندان می کند . تغییرات زیاد عیار و ارتباط عیار با واحدهای مختلف سنگی نیز به پیچیدگی مدل سازی عناصر نادر خاکی می افزاید. در این پژوهش، کانسار مگنتیت - آپاتیت گزستان با استفاده از روش های آماری و زمین آماری مورد بررسی و مدل سازی قرار گرفته است. در این کانسار عناصر نادر خاکی سبک و سنگین در کانی آپاتیت عنصره شامل عناصر نادر خاکی سبک و سنگین حاصل از 64 نمونه عیارسنجی شده 908 به صورت انکلوزیونهای ریز مونازیت متمرکز شده است. با استفاده از مغزه های حفاری و استفاده از روش های تحلیل فاکتوری مرحله مدل ، ای سازی فرکتالی عیار- تعداد و نیز انجام شبیه سازی زمین آماری تلاش شده است تا عیار عناصر نادر خاکی در واحدهای سنگی مختلف بررسی شود. درنهایت بر اساس نتایج حاصل از تحقق ها به آنالیز عدم قطعیت عیاری در کانسار پرداخته شد. کلیه شبیه ، مطالعات چندمتغیره، آنالیز ساختار فضایی سازی و تحلیل واحدهای سنگی، ارتباط فسفر با کانیسازی را تائید می کنند.
کلید واژگان: شبیه سازی زمین آماری, عناصر نادر خاکی, کانسار گزستان, آنالیز فاکتوری مرحله ای, فرکتال, مدل سازی عدم قطعیتThe traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances the necessity of multivariate modeling of these deposits. The wide variations of the grades and their relation with different rock units increase the complexities of the modeling of REEs. In this work, the Gazestan Magnetite-Apatite deposit was investigated and modeled using the statistical and geostatistical methods. Light and heavy REEs in apatite minerals are concentrated in the form of fine monazite inclusions. Using 908 assayed samples, 64 elements including light and heavy REEs from drill cores were analyzed. By performing the necessary pre-processing and stepwise factor analysis, and taking into account the threshold of 0.6 in six stages, a mineralization factor including phosphorus with the highest correlation was obtained. Then using a concentration-number fractal analysis on the mineralization factor, REEs were investigated in various rock units such as magnetite-apatite units. Next, using the sequential Gaussian simulation, the distribution of light, heavy, and total REEs and the mineralization factor in various realizations were obtained. Finally, based on the realizations, the analysis of uncertainty in the deposit was performed. All multivariate studies confirm the spatial structure analysis, simulation and analysis of rock units, and relationship of phosphorus with mineralization.
Keywords: Geostatistical Simulation, Rare Earth Elements, Gazestan Deposit, Staged Factor Analysis, Fractal, Uncertainty Modeling -
Scientia Iranica, Volume:25 Issue: 5, Sep - Oct 2018, PP 2881 -2903Closed loop supply chain design is to provide an optimal platform for efficient and effective supply chain management. It is an essential and strategic operation management problem in supply chain management, and usually includes multiple and conflicting objectives. A new mixed integer non-linear programming model for a multi-objective closed loop supply chain network design problem in the paper industry is developed under uncertainty. The objective functions are to minimize the total cost, maximize the total volume flexibility and minimize the total number of vehicles hired in order to fulfill the paper industry’s policies towards a cleaner and green environment. Also, a novel hybrid solution is presented based on stochastic programming, robust optimization and fuzzy goal programming. A numerical example utilizing the real data from the paper industry in East Azerbaijan of Iran is designed and the model performance is assessed. Furthermore, a recently developed Dragonfly Algorithm (DA) employed to solve the given problem in large scales and compared with Genetic Algorithm (GA). The results indicated that the DA achieved better performance compared with the GA.Keywords: Closed-loop Supply Chain Network Design, uncertainty modeling, Multi-objective optimization, paper industry
-
Journal of Operation and Automation in Power Engineering, Volume:6 Issue: 1, Winter - Spring 2018, PP 1 -12This paper proposes a novel hybrid Monte Carlo simulation-genetic approach (MCS-GA) for optimal operation of a distribution network considering renewable energy generation systems (REGSs) and battery energy storage systems (BESSs). The aim of this paper is to design an optimal charging /discharging scheduling of BESSs so that the total daily profit of distribution company (Disco) can be maximized. In this study, the power generation of REGSs such as photovoltaic resources (PVs) and the network electricity prices are studied through their uncertainty natures. The probability distribution function (PDF), is used to account for uncertainties in this paper. Also, the Monte Carlo simulation (MCS) is applied to generate different scenarios of network electricity prices and solar irradiation of PVs. Optimal scheduling of BESSs can be performed by genetic algorithm (GA). In this paper, firstly, the charging and discharging state of BESSs (positive or negative sign of battery power) is determined according to the variable amount of the electricity prices and power produced from PVs, which have been obtained from the Monte Carlo simulation. Then by using the GA, optimal amount of BESSs is determined. Therefore, a hybrid MCS-GA is used to solve this problem. Numerical examples are presented to illustrate the optimal charging/discharging power of the battery for maximizing the total daily profit.Keywords: Battery Energy Storage Systems, Optimal Operation, Uncertainty Modeling, Monte Carlo simulation, genetic algorithm
-
تخمین تقاضای شارژ خودروهای برقی تجمیع شده برای طراحی بهتر شبکه های توزیع آینده ضروری است. با توجه به این که هم اکنون ضریب نفوذ خودروهای برقی بسیار پایین است بنابراین اطلاعات آماری دقیقی برای تعیین وضعیت شارژ اولیه خودروهای برقی وجود ندارد. در این مقاله مدل جدیدی برای محاسبه وضعیت شارژ اولیه خودروهای برقی پیشنهاد می گردد که تابعی از میزان مصرف سوخت بنزین خودروهای معمولی است. آمار واقعی مصرف خودروهای معمولی مشخص است لذا در مدل پیشنهادی تمامی رفتارهای روزانه رانندگی مثل استفاده از سیستم تهویه مطبوع، سرعت خودرو، شیب جاده و غیره در قالب مصرف روزانه بنزین مربوطه تخمین زده می شود. همچنین برای ارزیابی روش پیشنهادی و نیز بررسی تاثیر شارژ خودروها بر شبکه توزیع، برخلاف اکثر مقالات موجود که خروجی های ثابت و مشخصی برای پارامترهای مهم شبکه ارائه نموده اند، در این مقاله پارامترهای مذکور به صورت توابع احتمال ارائه می گردد. نهایتا روش پیشنهادی بر روی سیستم توزیع 37 باسه IEEE تست و ارزیابی شده و با روش های موجود مقایسه می شود.کلید واژگان: خودروهای برقی قابل اتصال به شبکه, مدل سازی عدم قطعیت, پخش بار احتمالاتی, شبکه توزیعEstimation of aggregated electric vehicle charging demand is essential for better design of future distribution networks. Given that the penetration level of electric vehicles is currently very low, Hence, the precise statistical data are not available to determine the initial state of charge related to electric vehicles. this paper proposes a new model for calculating the initial state of charge in electric vehicles. The proposed model is a function of fuel consumption of the conventional gasoline vehicles and all driving behaviors such as the use of air conditioning, vehicle speed, road slope etc. have been considered. Also, unlike most of the papers that have specific outputs for the distribution network parameters, in this paper, the mentioned parameters are presented as probability functions. Finally, the proposed method is applied to the IEEE-37 node test feeder and simulation results are presented to illustrate its performance.Keywords: Plug, in electric vehicles, uncertainty modeling, probabilistic load flow, distribution network
-
As a matter of course, power market uncertainties escalation is by product of power industry restructure on one hand and the unrivalled penetration of renewable energies on the other. Generally, the decision making process in such an uncertain environment faces with different risks. In addition, the performance of real power markets is very close to oligopoly markets, in which, some market players exercise market power to influence the power market and this matter brings some risks to other players. Hence, each market player must consider these market features to choose his best decision. So, in case of such an uncertain environment, GENCO's bidding strategy would be a complicated and error-prone process. This paper aims to ease this issue suggesting the use of probabilistic bidding strategy of generation units by the unscented transformation (UT) method. The proposed method can consider the correlation between variables, where it models the coalition between market participants. Using the proposed methodology, a market participant can choose a desired range of profit; then, set his decision to manage his profit by reducing his risks. Finally, the proposed methodology is examined through some case studies done in a standard test system. Simulation results show that executing market power by some market players disturbs the competition in the market.
Keywords: GENCOs market power, optimal bidding strategy, uncertainty modeling, solar generation, wind generation -
Application of truncated gaussian simulation to ore-waste boundary modeling of Golgohar iron depositInternational Journal of Mining & Geo-Engineering, Volume:50 Issue: 2, Summer and Autumn 2016, PP 175 -181Truncated Gaussian Simulation (TGS) is a well-known method to generate realizations of the ore domains located in a spatial sequence. In geostatistical framework geological domains are normally utilized for stationary assumption. The ability to measure the uncertainty in the exact locations of the boundaries among different geological units is a common challenge for practitioners. As a simple and informative example of such a boundary, one can consider the boundary between ore and waste materials in an ore deposit. This boundary addresses the percentages of the ore and the waste, and also affect the future economy of mine and all precedent mine designs and mine plans. Deterministic approaches, based on interpretation of geological phenomenon, provide just one scenario of ore-waste variation, and do not offer a model for uncertainty of boundaries. On the other hand, geostatistical simulations, based on stochastic models, can measure the uncertainty of such a boundary. Through different techniques for spatial simulation of the categorical data (geological domains) truncated gaussian simulation has been proved to be versatile when geological units have sequential geometries and/or there are few number of indicators (ore and waste). This study addresses the application of TGS for conditional simulation of ore and waste domains in Golgohar iron ore deposit. Separation of the ore and waste domains has affected the ore tonnage estimation and resource evaluation. Various simulations can be considered as the spatial realizations of ore and waste. TGS can generate realizations of the domains and measure the uncertainty of ore-waste boundary. The accuracy of result has been checked through performance evaluation section and different scenarios (e.g. best, average and worst). The best scenario is the one with the most accuracy that is calculated from confusion matrix. The scenario No. 44 with 96 million cubic meters tonnage has an accuracy over 86 percent that is proposed as the best scenario for future mine design and planning.Keywords: Truncated Gaussian Simulation, Geological boundaries, Uncertainty modeling, Iron ore
-
The earned Value Management (EVM) is a project management technique used to measure project progress by integrating management efficiently of the three most important elements in a project; cost, schedule and scope. This paper presents an evidential reasoning (ER) based model for estimating the Earned Value (EV) of the projects activities with uncertainties in progress data. Since that subjective nature of EV measurement can incorporate into errors and uncertainties which cause biased judgments; and as the uncertainty is inherent in real-life activities, the developed ER based model is very useful to evaluate the EV of a project where uncertainty arises. A case study is provided to illustrate how the new model will be used and can be implemented in reality.Keywords: Evidential reasoning, Earned value management, Earned schedule, Project progress, Interval, uncertainty modeling
-
A common problem arising in project management is the fact that the baseline schedule is often disrupted during the project execution because of uncertain parameters. As a result, project managers are often unable to meet the deadline time of the milestones. Robust project scheduling is an effective approach in case of uncertainty. Upon adopting this approach, schedules are protected against possible disruptions that may occur during project execution. In order to apply robust scheduling principles to real projects, one should make assumptions close to the actual conditions of the project as much as possible. In this paper, in terms of uncertainty in both activities duration and resources availability, some methods are proposed to construct the robust schedules. In addition, various numerical experiments are applied to different problem types with the aid of simulation. The main purpose of those is to assess the performance of robust scheduling methods under different conditions. Finally, we formulate recommendations regarding the best method of robust scheduling based on the results of these experiments.Keywords: Project Scheduling, Uncertainty Modeling, Robustness, Simulation
-
Journal of Optimization in Industrial Engineering, Volume:8 Issue: 18, Summer and Autumn 2015, PP 27 -36In many practical distribution networks, managers face significant uncertainties in demand, local price of building facilities, transportation cost, and macro and microeconomic parameters. This paper addresses design of distribution networks in a supply chain system which optimizes the performance of distribution networks subject to required service level. This service level, which is considered for each arbitrary request arriving at a distribution center (facility), has a (pre-specified) small probability of being lost. In this mathematical model, customer’s demand is stochastic that follows uniform distribution. In this model, inter-depot transportation (transportation between distributions centers (DCs)), capacities of facilities, and coverage radius restrictions are considered. For this restriction, each DC cannot service all customers. The aim of this model is to select and optimize location of plants and DCs. Also, the best flow of products between DCs and from plants to DCs and from DCs to customers will be determined. The paper presents a mixed integer programming model and proposed an exact solution procedure in regard to Benders’ decomposition method.Keywords: Facility location, Distribution network, Bender's Decomposition, Coverage Radius, Uncertainty modeling, Inter, depot transportation
-
We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the uncertain data, classical robust optimization approaches cannot be applied directly to construct its robust counterpart. We exploit the problem structure to develop exact solution methods and present some computational results.Keywords: Uncertainty modeling, Robustness, sensitivity analysis, Facilities planning, design, Quadratic assignment problem, Non, linear integer programming
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.