به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "activity recognition" در نشریات گروه "برق"

تکرار جستجوی کلیدواژه «activity recognition» در نشریات گروه «فنی و مهندسی»
جستجوی activity recognition در مقالات مجلات علمی
  • Hossein Shahverdi, Reza Shahbazian, Parisa Fard Moshiri, Reza Asvadi, Seyed Ali Ghorashi*

    Human activity recognition (HAR) has the potential to significantly impact applications such as health monitoring, context-aware systems, transportation, robotics, and smart cities. Because of the prevalence of wireless devices, the Wi-Fi-based approach has attracted a lot of attention among other existing methods such as sensor-based and vision-based HAR. Wi-Fi devices can be used to distinguish between daily activities such as "walking," "running," and "sleeping," which affect Wi-Fi signal propagation. This paper proposes a Deep Learning method for HAR tasks that makes use of channel state information (CSI). We convert the CSI data to RGB images and classify the activity recognition using a 2D-Convolutional Neural Network (CNN). We evaluate the performance of the proposed method on two publicly available datasets for CSI data. Our experiments show that converting data into RGB images improves performance and accuracy compared to our previous method by at least 5%.

    Keywords: Activity Recognition, Channel State Information, Convolutional Neural Network, Deep Learning, WiFi
  • اشکان نیک آیین، محسن رحمانی*

    در سیستم هایی که افراد در فعالیت های روزانه خود به مراقبت ویژه نیاز دارند، الگوریتم های تشخیص فعالیت انسانی کاربرد دارند. روش های مختلف یادگیری ماشین، از جمله مدل مخفی مارکوف و روش های مرتبط به آن، به طور گسترده ای برای حل مساله تشخیص فعالیت انسانی استفاده شده اند. در کارهای قبلی، روش های مبتنی بر مدل مخفی مارکوف از فرض استقلال شرطی برای محاسبه احتمال مشاهدات استفاده شده است. در این تحقیق، به جای فرض استقلال شرطی، یک مدل احتمالی جدید برای فضای رشته ها، بر اساس تاب خوردگی زمان پویا و فاصله لونشتاین وزنی پیشنهاد شده است. مدل احتمالی پیشنهادی، که با یک مدل مخفی شبه مارکف ترکیب شده، روی یکی از مجموعه داده های در دسترس اعمال شده است. نتایج حاصله نشان می دهد که استفاده از مدل پیشنهادی دقت شناسایی فعالیت های روزانه را به میزان قابل توجهی اقزایش می دهد. کلیه کدها و داده ها مقاله حاضر، از طریق پیوند github.com/ashnik1353 در دسترس هستند.

    کلید واژگان: تشخیص فعالیت, مدل نیمه مارکوف پنهان, شباهت رشته, فاصله وزنی لونشتاین, پیچش زمان پویا
    Ashkan Nikaiin, Mohsen Rahmani *

    Human activity recognition can be employed in systems that provide support to people who need special care in their daily activities. Various machine learning methods, including Hidden Markov Models and their extensions, are widely used to deal with this problem. In the previous works, HMM-based methods use the conditional independent assumption to compute the probability of a segment of observations. In this research, instead of conditional independent assumption, a new probabilistic model for string space, based on Dynamic Time Warping and Weighted Levenstein Distance is proposed. The model, combined with the Hidden semi Markov Model, is applied to a publicly available dataset. The results show considerable improvements in comparison with using the Hidden semi Markov Model independently. The proposed models are flexible and can work together with other probabilistic models.

    Keywords: activity recognition, hidden semi Markov model, string dissimilarity, Weighted Levenstein Distance, Dynamic Time Warping
  • A. Mousavi *, A. Sheikh Mohammad Zadeh, M. Akbari, A. Hunter
    Mobile technologies have deployed a variety of Internet–based services via location based services. The adoption of these services by users has led to mammoth amounts of trajectory data. To use these services effectively, analysis of these kinds of data across different application domains is required in order to identify the activities that users might need to do in different places. Researchers from different communities have developed models and techniques to extract activity types from such data, but they mainly have focused on the geometric properties of trajectories and do not consider the semantic aspect of moving objects. This work proposes a new ontology-based approach so as to recognize human activity from GPS data for understanding and interpreting mobility data. The performance of the approach was tested and evaluated using a dataset, which was acquired by a user over a year within the urban area in the City of Calgary in 2010. It was observed that the accuracy of the results was related to the availability of the points of interest around the places that the user had stopped. Moreover, an evaluation experiment was done, which revealed the effectiveness of the proposed method with an improvement of 50 % performance with complexity trend of an O(n).
    Keywords: Ontology, Data mining, Activity Recognition, Semantic, GPS
  • V. Ghasemi *, A. Pouyan, M. Sharifi
    This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically for activities, to achieve more flexibility and extensibility. Our method is verified via two experiments. In the first experiment, it is compared to a naïve Bayes approach and three ontology based methods. In this experiment our method outperforms the naïve Bayes classifier, having 88.9% accuracy. However, it is comparable and similar to the ontology based schemes, but since no manual ontology definition is needed, our method is more flexible and extensible than the previous ones. In the second experiment, a larger dataset is used and our method is compared to three approaches which are based on naïve Bayes classifiers, hidden Markov models, and hidden semi Markov models. Three features are extracted from sensors’ data and incorporated in the benchmark methods, making nine implementations. In this experiment our method shows an accuracy of 94.2% that in most of the cases outperforms the benchmark methods, or is comparable to them.
    Keywords: Activity Recognition, Dempster-Shafer theory of evidence, smart homes
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال