جستجوی مقالات مرتبط با کلیدواژه "ensemble method" در نشریات گروه "برق"
تکرار جستجوی کلیدواژه «ensemble method» در نشریات گروه «فنی و مهندسی»-
Journal of Electrical and Computer Engineering Innovations, Volume:12 Issue: 2, Summer-Autumn 2024, PP 409 -424Background and ObjectivesCommunity question-answering (CQA) websites have become increasingly popular as platforms for individuals to seek and share knowledge. Identifying users with a special shape of expertise on CQA websites is a beneficial task for both companies and individuals. Specifically, finding those who have a general understanding of certain areas but lack expertise in other fields is crucial for companies who are planning internship programs. These users, called dash-shaped users, are willing to work for low wages and have the potential to quickly develop into skilled professionals, thus minimizing the risk of unsuccessful recruitment. Due to the vast number of users on CQA websites, they provide valuable resources for finding individuals with various levels of expertise. This study is the first of its kind to directly classify CQA users based solely on the textual content of their posts.MethodsTo achieve this objective, we propose an ensemble of advanced deep learning algorithms and traditional machine learning methods for the binary classification of CQA users into two categories: those with dash-shaped expertise and those without. In the proposed method, we used the stack generalization to fuse the results of the dep and machine learning methods. To evaluate the effectiveness of our approach, we conducted an extensive experiment on three large datasets focused on Android, C#, and Java topics extracted from the Stack Overflow website.ResultsThe results on four datasets of the Stack Overflow, demonstrate that our ensemble method not only outperforms baseline methods including seven traditional machine learning and six deep models, but it achieves higher performance than state-of-the-art deep models by an average of 10% accuracy and F1-measure.ConclusionThe proposed model showed promising results in confirming that by using only their textual content of questions, we can classify the users in CQA websites. Specifically, the results showed that using the contextual content of the questions, the proposed model can be used for detecting the dash-shaped users precisely. Moreover, the proposed model is not limited to detecting dash-shaped users. It can also classify other shapes of expertise, such as T- and C-shaped users, which are valuable for forming agile software teams. Additionally, our model can be used as a filter method for downstream applications, like intern recommendations.Keywords: Shape Of Expertise, Deep Learning, Machine Learning, Ensemble Method, Community Question Answering
-
در سال های اخیر موضوع رتبه بندی اعتباری و شناسایی مشتریان خوش حساب و بدحساب، بسیار مورد توجه بانک ها قرار گرفته است. اعطای تسهیلات به مشتریان خوش حساب و اجتناب از اعطای تسهیلات به مشتریان بدحساب که منجر به کاهش معوقات بانکی می شود، همواره یکی از دغدغه های مهم مدیران بانک ها است که این مهم به کمک استقرار نظام رتبه بندی اعتباری کارآمد و خوب دور از دسترس نیست. در این مقاله، مدل گروهی جدیدی بر مبنای الگوریتم ماشین بردار پشتیبان برای رتبه بندی اعتباری مشتریان بانک ارایه می شود. ابتدا به روش بوت استرپ، مجموعه داده ها به چندین زیرمجموعه تقسیم می شود. سپس الگوریتم ماشین بردار پشتیبان بر روی هر زیرمجموعه اعمال و چندین مدل تشکیل می شود. در انتها بین مدل ها رای گیری انجام و مدل نهایی به دست می آید. به منظور نمایش دقت مدل گروهی، داده های 2218 مشتری بانک پاسارگاد شامل 14 ویژگی توضیح دهنده به کمک روش گروهی پیشنهادی مورد ارزیابی قرار گرفتند. بر اساس معیارهای مختلف، نتایج بدست آمده بر روی داده های بانک پاسارگاد، برتری روش ماشین بردار پشتیبان گروهی بر روش معمولی ماشین بردار پشتیبان و روش جنگل تصادفی تایید می شود. خطای نوع دوم یعنی خطای شناسایی مشتریان بدحساب به عنوان خوش حساب در روش گروهی پیشنهادی با هسته خطی 17 درصد کمتر از روش معمولی ماشین بردار پشتیبان و 18 درصد کمتر از روش جنگل تصادفی است.
کلید واژگان: رتبه بندی اعتباری, مشتریان بانک, ماشین بردار پشتیبان, روش گروهی, بوت استرپIn recent years, the issue of credit rating and identification of good and bad customers have received a lot of attention from banks. Granting facilities to well-accounted customers and avoiding granting facilities to badly accounted customers, which leads to reducing bank arrears, are always the major concerns of bank managers, which are not out of reach with the help of an efficient and good credit rating system. This paper presents a new ensemble model based on support vector machine algorithm for the credit rating of bank customers. First, the data set is divided into several subsets by a bootstrap approach. The support vector machine algorithm is then applied to each subset and several models are formed. At the end, voting is done between the models, and the final model is obtained. In order to show the accuracy of the ensemble model, the credit data of Pasargad Bank’s costumers including 2218 instances of credit applicants, each instance contains 14 explanatory attribute, are evaluated using the proposed method. Based on different criteria, the results obtained on the data of the Pasargad Bank’s costumers confirm the superiority of the ensemble support vector machine method over the usual support vector machine method and the random forest method. The type II error (indicates the proportion of bad applicants who are wrongly predicted to be good applicants) of the proposed ensemble method with linear core is 17% less than the usual support vector machine method and 15% less than the random forest method.
Keywords: credit rating, bank customers, Support Vector Machine, ensemble method, bootstrap -
Journal of Electrical and Computer Engineering Innovations, Volume:8 Issue: 1, Winter-Spring 2020, PP 41 -52Background and Objectives
Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment target and seek for tweets containing positive, negative, or neutral opinions. This is remarkable for consumers to investigate the products before purchase automatically.
MethodsThis paper suggests a model for sentiment classification. The goal of this model is to investigate what is the role of n-grams and sampling techniques in Sentiment Classification application using an ensemble method on Twitter datasets. Also, it examines both binary and multiple classifications, which are classified datasets into positive, negative, or neutral classes.
ResultsTwitter Classification is an outstanding problem, which has very few free resources and not available due to modified authorization status. However, all Twitter datasets are not labeled and free, except for our applied dataset. We reveal that the combination of ensemble methods, sampling techniques, and n-grams can improve the accuracy of Twitter Sentiment Classification.
ConclusionThe results confirmed the superiority of the proposed model over state-of-the-art systems. The highest results obtained in terms of accuracy, precision, recall, and f-measure..The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
Keywords: Text Mining, Text Classification, Machine Learning, Ensemble method, Twitter
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.