به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "supplier selection" در نشریات گروه "برق"

تکرار جستجوی کلیدواژه «supplier selection» در نشریات گروه «فنی و مهندسی»
  • A. Bakhtiari Tavana, M. Rabieh *, M. S. Pishvaee, M. Esmaeili

    Suppliers as one of the main sources of vulnerability may lead to disruption and risk in supply chains. Thus, resilient supplier selection can lead to an increase in the resilience of the supply process, especially in automotive supply chains. The goal of this study is to select a set of resilient suppliers and optimal demand allocation in an automotive supply chain under risk. For this purpose, a bi-objective two-stage stochastic programming model is presented. In contrast to previous mathematical models, our model includes a new objective function to consider the supplier’s delivery performance as one of the criteria of resilient supplier selection and also the k-means clustering method is used to cluster and decrease the number of disruption scenarios. In the proposed model, due to the uncertainty of demand, chance-constrained programming approach has been utilized. The augmented Ɛ-constraint method is implemented to solve the presented model. Finally, sensitivity analysis has been done to determine the effect of parameter changes on the final results. The results of the research indicate that contingency planning can reduce the effect of disruption risks. The findings also show that the strategy of the supply chain regionalization is important in reducing the effects of environmental disruption.

    Keywords: Resilience, Supplier selection, Order allocation, Resilient supplier, disruption, Two-stage stochastic programming
  • S. Amirghodsi, A. Bonyadi Naeini *, A. Makui
    Supplier selection is vital in the supply chain, with significant effects on the chain structure. Three important factors contribute to this process, namely, product/technology selection, selection of the technology/product transfer method, and supplier selection. In this study, after defining the influential criteria for these factors, the best-worst method (BWM) was employed for measuring the weights. Next, the three factors were incorporated into goal programming (GP) to minimize the cost and failure and maximize the level of service and environmental compliance. The results of the GP indicated the level of demand allocation to the supplier(s). Overall, the gray analytical network process (GANP) is used as the best decision-making method, and over the past four years, BWM has been applied in decision-making processes. Therefore, the GANP method was used to measure the weights of criteria. These weights were also incorporated into GP for comparison with the proposed combination. The results showed the superiority of BWM-GP over GANP-GP, given the reduced cost and failure, besides the increased level of service and environmental compliance.
    Keywords: Supplier selection, technology selection, Best-Worst Method, goal programing, grey analytical network process
  • J. C. P. Yu, H. M. Wee *, S. Jeng, Y. Daryanto
    This study proposes a framework for supplier evaluation, selection, and assignment that incorporates a two-stage game-theoretic approach method. The objective is to provide insights to manufacturers in choosing suitable suppliers for different manufacturing processes. The framework applies to the decision logic of multiple manufacturing processes. In the first stage, a non-cooperative game model is utilized for supplier evaluation and selection. The interactive behaviors between a manufacturer and some supplier candidates are modeled and analyzed so that the supplier evaluation value (SEV) can be obtained using the Nash equilibrium. In the second stage, the supplier evaluation values become the input for the Shepley values calculation of each supplier under a cooperative game model. The Shapley values are utilized to create a set of limited supplier allocation. This paper provides managerial insights to verify the proposed approach on supplier selection and allocation. Thus enables SCM manager to optimize supplier evaluation, selection, and order assignment.
    Keywords: Supplier selection, Nash Equilibrium, Supplier evaluation value, shapley value
  • O. Solgi, J. Gheidar Kheljani *, E. Dehghani, A. Taromi

    Recently, the manufactures of complex product and its subsystems have faced a series of disruptions and troublesome behaviors in supplying goods and items. Likewise, suppliers in this area are more likely to be affected by external risks, in turn eventuating in disturbances. Selecting resilient and expedient suppliers dramatically decreases the delay time and costs and contributes to the competitiveness and development of the companies and organizations in this field. In this regard, this paper aims at proposing a bi-objective robust mathematical model to provide resilience supplier selection and order allocation for complex products and its subsystems in response to uncertainty and disruption risks. In the proposed model, a robust optimization approach is deployed, providing stable decisions for the proposed problem. Also, different resilience strategies including restoring supply from occurred disruptions, fortification of the suppliers, using backup suppliers, and utilizing the extra production capacity for suppliers have been devised to tolerate disruptions. Meanwhile, the augmented ε-constraint method is used, ensuring the optimal strong Pareto solutions and preventing the weak ones for the proposed bi-objective model. The evaluation of the effectiveness and desirability of the developed model is explored by discussing a real case study, via which helpful managerial insights are gained.

    Keywords: Resiliency, Supply chain design, Supplier selection, uncertainty, robust optimization, disruption, Complex products, subsystems
  • Z. Ebrahim Qazvini, A. Haji *, H. Mina
    In the field of supply chain, selecting a suitable green supplier could significantly help us to decrease the cost and the risk involved in the operations as well as increase in the quality and green. In this paper, we develop an integrated two-stage approach based on fuzzy analytic hierarchy process (FAHP) and multi-objective mixed-integer linear programming to select suppliers and order allocation in green supply chain. In the first stage, suppliers are evaluated using FAHP method, and in the second stage, a multi-product multi-period supply chain considering green location-routing problem, discounting, and time window under uncertainty is developed. Then, a fuzzy solution approach is applied to solve proposed model using the data of a pharmaceutical chain in Iran. Results will verify the efficiency of the proposed model.
    Keywords: Supplier selection, Order allocation, mathematical modelling, Analytic Hierarchy Process, Fuzzy theory
  • مرجان کوچکی رفسنجانی*، ارشام برومند سعید، فرزانه میرزاپور

    فرآیند انتخاب تامین کننده مناسب که قادر به فراهم کردن نیاز خریدار از نظر محصولات باکیفیت با قیمت مناسب و در یک زمان و حجم مناسب باشد، یکی از ضروری ترین فعالیت ها برای ایجاد یک زنجیره تامین کارا است. با توجه به اهمیت موضوع، در این مقاله، برای حل مساله انتخاب تامین کننده، رویکردی ترکیبی به همراه تصمیم گیری گروهی در مسایل تصمیم گیری چند معیاره در بستر فازی شهودی بازه ای مقدار ارایه شده است. در این روش مقادیر متناسب با هر تامین کننده در بستر فازی شهودی بازه ای مقدار مشخص شده است؛ سپس اولویت های جمعی متناسب با هر تامین کننده به دست آورده می شوند و از روش تاپسیس، ضریب نزدیکی (شاخص شباهت) محاسبه و سپس تامین کننده ها بر اساس این مقدار ارزیابی می شوند. در انتها از روش برنامه ریزی هدفمند با تابع رضایت بخش برای رتبه بندی نهایی به تامین کننده ها استفاده می شود. مدل پیشنهادی به وسیله نرم افزار متلب پیاده سازی شده و با طرح سناریویی روند کاری مدل پیشنهادی برای رتبه بندی تامین کننده ها تشریح شده است.

    کلید واژگان: مجموعه فازی شهودی بازه ای مقدار, اولویت های جمعی, تاپسیس فازی, معیارهای چند گانه, انتخاب تامین کننده, برنامه ریزی خطی هدف دار
    Marjan Kuchaki Rafsanjani*, Arsham Borumand Saeid, Farzane Mirzapour

    The main objectives of supply chain management are reducing the risk of supply chain and production cost, increase the income, improve the customer services, optimizing the achievement level, and business processes which would increase ability, competency, customer satisfaction, and profitability. Further, the process of selecting the appropriate supplier capable of providing buyerchr('39')s requirements in terms of quality products with suitable price and at a suitable time and size is one of the most essential activities to create an efficient supply chain. Consequently, false decisions in the context of supplier selection would lead to negative effects. Usually, suitable supplier selection methods have been multi-criteria or attribute, so finding the optimal solution for supplier selection is demanding. The customary methods in this field have struggled with quantitative criteria however there are a wide range of qualitative criteria in supplier selection. this article has used interval valued intuitionistic fuzzy sets for selecting the appropriate suppliers, which reflect ambiguity and uncertainty far better than other methods. In this article, trapezoidal fuzzy membership function is used for lingual qualitative values. Goal programming satisfaction function (GPSF) is a kind of technique that helps decision makers in solving problems involving conflicting and competing criteria and objectives. Due to the importance of the issue, in this paper, hybrid approach with a group decision-making in Multiple Criteria Decision Making (MCDM) in the context of a range of interval-valued intuitionistic fuzzy sets is implemented to solve the supplier selection problem. In this model in phase 1, decision makers express their opinion about each alternative based on different attribute qualitatively, and after creating interval valued intuitionistic fuzzy membership, a new variable is defined that via its help, interval-valued intuitionistic fuzzy amounts are calculated for each alternative. because of Having capabilities and comprehensiveness in their inside, not only they are better than other fuzzy sets but also they are the best for tracing the real condition and environment in order to select suppliers. Thereafter, for each alternative upper and lower bonds are calculated based on interval-valued intuitionistic fuzzy amounts. In phase 2, Operator Weighted Average (OWA) algorithm is used to reach a collective consensus. After computing the degree of consensus, closeness coefficients is evaluated within the help of TOPSIS method, which is in fact one of the most practicable methods between multi-criteria decision-making methods, such as SAW, AHP, CP, VIKOR. With regard to closeness coefficient, the amount of closeness between individual and collective’s agreement is accounted. The main aim of this article is optimizing the closeness coefficient. The alternative with maximum closeness coefficient is closer to the ideal solution. The final goal of proposed model is ranking the suppliers, meaning that satisfy the main factors of decision making, which is why GPSF model is used. After giving goal and restrict functions, GPSF model will be solved and rank alternatives.

    Keywords: Interval-valued intuitionistic fuzzy set, Collective preference, Fuzzy TOPSIS, Multi-criteria, Supplier selection, Goal programming satisfaction function
  • Salman Abrishami, Hashem Vahdani *, Babak Rezaee
    Because of growing competition in the global markets and the vital role of suppliers in business success, the subject of supplier selection has attracted many researchers and practitioners during the recent years. In addition to the supplier selection, the order quantity discount provided by the suppliers, is considered through a new mixed-integer linear programming (MILP) model involving a manufacturer with multiple products and multiple purchasing items over multiple periods. According to the proposed model, the manufacturer purchases different amount of raw materials from selected suppliers in order to produce different products. Customers’ demands are fulfilled by minimizing the total purchase, inventory, production, and transportation costs over a multi-period planning horizon. Since the problem is NP-hard, an efficient genetic algorithm (GA) is used to solve the large-scale real-world instances. The results are compared with results from the exact approach wherever possible in order to investigate the efficiency of the algorithm.
    Keywords: Supplier selection, Inventory management, Quantity discounts, Carrier selection, Genetic Algorithm
  • نعیمه باقری راد، جواد بهنامیان*
    یکی از مهم ترین مراحل در فرآیند خرید، انتخاب تامین کنندگان مناسب است. انتخاب تامین کنندگان مناسب می تواند به شکل قابل ملاحظه ای هزینه های خرید را کاهش و قابلیت رقابت پذیری سازمان را افزایش دهد. این مساله در واقع یک مساله تصمیم گیری چندمعیاره است که در آن عمل تصمیم گیری براساس یک سری معیارهای کیفی وکمی صورت می گیرد. هدف از این مقاله، ارایه یک روش تصمیم گیری جهت انتخاب تامین کننده مناسب در زنجیره تامین است. در این مقاله، یک مدل ترکیبی تصمیم گیری چندمعیاره فازی برای زمانی که تعداد معیارها زیاد و بین آن ها روابط یا وابستگی برقرار باشد ارایه شده است. در این مدل از روش DEMATEL به منظور تعیین ساختار روابط بین معیارها و از روش ANP جهت شناسایی وزن هر یک از معیارها و از روش بهینه سازی چندمعیاره حل سازشی VIKOR برای رتبه بندی بهترین تامین کننده استفاده شده است. در این تحقیق به منظور پوشش حالات مبهم تصمیم گیری، به جای استفاده از اعداد قطعی از متغیرهای کلامی استفاده شده است. مدل ترکیبی پیشنهادی می تواند به مدیران و کارشناسان سازمان ها در جهت بهبود انتخاب های خود بخصوص زمانی که تعداد معیارها زیاد و بین آن ها وابستگی وجود دارد تحت شرایط عدم اطمینان، کمک کند. همچنین روش پیشنهادی، تعداد ماتریس های مقایسه زوجی و حجم محاسبه ها را کاهش داده و سرعت محاسبه ها را نیز افزایش و از پیچیدگی مساله کاسته است.
    کلید واژگان: انتخاب تامین کننده, تئوری فازی, تصمیم گیری چند معیاره, ANP, DEMATEL, VIKOR
    Naeeme Bagher Rad, Javad Behnamian *
    In this paper, a hybrid model of fuzzy multi-criteria decision making is presented for the cases a large number of criteria, relationships or affiliation exists are between them. In this model, the DEMATEL method is used to determine the relationships between criteria and analytic network process (ANP) method to identify the weight of each criteria and the VIKOR method for optimizing the multi-criteria of ranking the best supplier. In this study, in order to cover the cases of decisions with ambiguous scenarios, rather than using absolute numbers, the linguistic variables are used. The proposed hybrid model can direct managers and experts organizations In order to improve their choices, especially when there are numerous criteria and there is dependence between them under conditions of uncertainty.The proposed method, reduces number of pairwise comparison matrix and volume of calculations and also increases calculation speed and the complexity of the problem is reduced. In order to showing the solving process a numerical example is presented. The computational results show that proposed hybrid method, in addition to ranking alternatives calculates the final weight of each criterion.
    Keywords: Supplier selection, Fuzzy theory, MADM, ANP, DEMATEL, VIKOR
  • Mohammad Ali Sobhanallahi, Ahmad Mahmoodzadeh *, Bahman Naderi
    This paper introduces a supplier selection and order allocation problem in a single-buyer-multi-supplier supply chain in which appropriate suppliers are selected and orders allocated to them. Transportation costs, quantity discount, fuzzy type uncertainty and some practical constraints are taken into account in the problem. The problem is formulated as a bi-objective model to minimize annual supply chain costs and to maximize the annual purchasing value. The fuzzy weights of suppliers, which are the output of one of the supplier evaluation methods, are considered in the second objective function. Then, we propose a novel fuzzy multi-objective programming method for obtaining Pareto solutions. The method is the extension of a single-objective method exist in the literature. This method is based on the decision maker's degree of satisfaction from each fuzzy objectives considering the fulfillment level of fuzzy constraints. In the proposed method, the problem remains multi-objective and, unlike existing methods, does not transformed into a single-objective model. At the last stage of proposed method, the fuzzy results are compared with an index, and decision maker can identify the appropriate or inappropriate solutions. To solve the problem, non-dominated sorting genetic algorithm (NSGA II) is designed and computational results are presented using numerical examples.
    Keywords: Supplier selection, Order allocation, Fuzzy multi objective programing, NSGA II
  • Navid Sahebjamnia *
    Increasing the number of disasters around the world will decrease the performance of the supply chain. The decision makers should design resilience supply chain network which could encounter with disruptions. This paper develops an integrated resilience model of supplier selection and order allocation. Resiliency measures including quality, delivery, technology, continuity, environmental competences are explored for determining the Resilience Weight of suppliers. Fuzzy DEMATEL and ANP methods are applied to find overall performance of each supplier. Then, the developed mathematical model maximizes overall performance of suppliers while minimizes total cost of network. The proposed mathematical model helps the decision makers to select supplier and allocate the optimum order quantities by considering shortage. Since the disruptive incidents are inevitable events in real world problems, the impact of disruptions on suppliers, manufactures and retailers has been considered in the proposed model. Inherent uncertainties of parameters are taken into account to increase the compatibility of the approach with realistic environments. To tackle the uncertainty and multi-objectiveness of the proposed model, interval Method and TH aggregation function is adapted. The proposed model is validated through application to a real case study in a furniture company. Results demonstrate the usefulness and applicability of the proposed model.
    Keywords: Resilience supply chain, Supplier selection, Order allocation, mathematical modeling, uncertainty
  • Congjun Rao, Cheng Wang *, Zhuo Hu, Ying Meng, Ming Liu
    Green supply chain management is a crucial challenge for the sustainable development of the enterprises. In this paper, we study the problem of supplier selection for the multi-attribute and multi-source green procurement of electric coal under fuzzy information environment. Concretely, we establish a new index system of supplier selection by considering both the economic factors and environmental factors, and then present a multi-attribute decision making method based on 2-tuple deviation degree to rank all alternative suppliers in the green procurement of electric coal. We also highlight the implementation, availability, and feasibility of the green procurement decision method of electric coal by using an example of the multi-source procurement of electricity coal. We try to provide theoretical basis and decision-making reference for the thermal power enterprise to implement scientific green procurement management of electric coal.
    Keywords: Electric coal, Multi-attribute, multi-source procurement, Supplier selection, Linguistic fuzzy variable, 2-tuple, 2-tuple deviation degree
  • Masood Rabieh*, Mohammad Modarres, Adel Azar
    This paper proposes an innovative robust-fuzzy method for multi-objective, multi-period supplier selection problem under multiple uncertainties. This approach integrates robust optimization and fuzzy programming. Uncertain parameters are modeled as random variables that take value within a symmetrical interval. However, due to the complexity or ambiguity of some real world problems and specially the nature of some of the available input data, the length of interval is also highly uncertain. This ambiguity motivated us to present a new approach, which can be applicable to multiple uncertainties conditions. Thus, in our approach the half-length of these intervals is also represented by fuzzy membership function. We develop a model and a solution approach to select suppliers by considering risk. The proposed method is applied to a real case of supplier selection in automobile industry under uncertainty and ambiguity conditions. To verify the proposed model, we evaluated the results by simulation technique and compared values of objective function under different scenarios.
    Keywords: Supplier selection, uncertainty, Robust Optimization, Fuzzy programming, Robust, fuzzy model, Auto industry
  • ساموئل یوسفی *، مصطفی جهانگشای رضایی
    یکی از مهمترین مسائل در زنجیره تامین، انتخاب تامین کنندگان با هدف بهینه سازی هزینه های موجودی در شرایط عدم قطعیت تقاضا است. از سوی دیگر، در محیط رقابتی امروزی، بالا رفتن انتظارات مشتری برای خریداری محصولات با کیفیت و مقرون به صرفه، منجر به توسعه روابط بلندمدت اعضای زنجیره تامین این محصولات از جمله خریدار و تامین کننده شده است. بنابراین، مساله انتخاب مجموعه مناسبی از تامین کنندگان کارا و تخصیص سفارش به آن ها، یکی از مهم ترین تصمیمات استراتژیک برای ایجاد یک سیستم زنجیره تامین کارا و بهینه در محیطی رقابتی و دارای عدم قطعیت است. این تحقیق در ابتدا سعی دارد با ارائه یک مدل ترکیبی برنامه ریزی چندهدفه از تحلیل پوششی داده ها و مدل هماهنگی خریدار-چند فروشنده (تامین کننده) ، انتخاب مجموعه ای از تامین کنندگان کارا در محیطی غیر رقابتی و با فرض تقاضای غیر قطعی را انجام دهد. سپس، با ارائه مدل تحلیل پوششی داده ها بر مبنای بازی چانه زنی نش، رقابت بین تامین کنندگان شبیه سازی می شود. نتایج حاصل از دو مدل، نشان می دهد که شرایط رقابتی منجر به بهبود کارایی شده است.
    کلید واژگان: انتخاب تامین کننده, کارایی, تحلیل پوششی داده ها, بازی چانه زنی نش, عدم قطعیت تقاضا
    Samuel Yousefi *, Mustafa Jahangoshai Rezaee
    One of the most important issues in the supply chain is supplier selection with the aim of optimizing expenditures on uncertain demand. On the other hand, due to today's competitive environment, rising customer expectations for high quality and affordable products purchased, lead to development the long-term relationship of supply chain members including buyer and supplier. Therefore, selection of an appropriate set of efficient supplier and allocating orders to theirs, is one of the most important strategic decisions to create effective and efficient supply chain system in competitive environment that characterized by uncertainty. This study, at first, is attempted to select a set of efficient suppliers in a non-competitive environment with uncertain demand through the presenting an integrated model of multi objective programming including data envelopment analysis (DEA) and single buyer-multi vendor (supplier) coordination. Afterwards, by presenting a DEA model based on Nash bargaining game, the competitive environment among suppliers is simulated. The results of the two models shows that competitive environment has led to improved efficiency.
    Keywords: Supplier selection, Efficiency, Data envelopment analysis, Nash bargaining game, Uncertain demand
  • Reza Alaei, Mostafa Setak *
    In this paper, a combinatorial reverse auction mechanism is proposed to select suppliers for required items of a company. As a contribution, it is assumed that the task of supplying each required item is indivisible to multiple suppliers or the company prefers to select only one supplier for supplying each required item. So, the winner determination process is done in such a way that supplying each tendered item is assigned to only one potential supplier. The corresponding winner determination problem is formulated as a binary integer program which is an NP-complete combinatorial optimization problem. Since exact methods are failed in solving this kind of problems in a reasonable time, a meta-heuristic algorithm called scatter search is proposed for finding feasible and near-optimal solutions of the formulated winner determination problem. For evaluating the performance of the proposed algorithm, several instances of the problem with different real-world sizes are randomly generated and solved using the proposed algorithm with tuned parameters. Computational results show that the proposed scatter search method performs well in solving the problem instances.
    Keywords: Outsourcing, Supplier selection, Combinatorial Reverse Auction, Winner Determination Problem, Scatter Search, Taguchi Method
  • F. Zaheri *, M. Zandieh, M.T. Taghavifard
    This paper proposes two models to formulate a Supplier Selection Problem (SSP) in a single-buyer, multi-supplier two-echelon supply chain network. The model coordinates order allocation and supplier selection problems under all-unit quantity discount policy. In this way, bi-level programming is employed to obtain two models: 1) The model with buyer as a leader; 2) The model with vendor as a leader. The resulted nonlinear bi-level programming problems are hard to solve. Therefore, Particle Swarm Optimization (PSO) algorithm is used to deal with the complexity of the model and makes it solvable. Numerical results show that the proposed model is ecient for SSP in compliance with order allocation decision making.
    Keywords: Supply chain, Bi-level programming, Supplier selection, PSO
  • محمد علی بهشتی نیا *، وحید نعمتی ابوذر
    یکی از مسایل مهم در طراحی یک زنجیره تامین، مساله انتخاب تامین کننده است. پیچیدگی این مساله در حقیقت به این دلیل است که هر کدام از تامین کنندگان قسمتی از معیارهای خریدار را برآورده می کنند و انتخاب از میان آنها در واقع یک مساله تصمیم گیری چندمعیاره (MCDM) است که نیاز به یک رویکرد ساختار یافته و سیستمی دارد. در این مقاله ضمن پرداختن به صنعت خاص تبلیغات دو معیار جدید برای ارزیابی تامین کنندگان ارائه شده است. همچنین یک روش ترکیبی، با تلفیق تکنیکهای فرآیند تحلیل سلسله مراتبی (AHP) فازی و تاپسیس (TOPSIS) فازی به منظور ارزیابی تامین-کنندگان در این صنعت پیشنهاد شده است. هر یک از این دو روش دارای مزایا و معایبی هستند. سعی شده است نحوه تلفیق این دو روش به گونه ای باشد که بتوان از مزایای هر دو روش استفاده نمود. علت استفاده ار تئوری فازی در این روش ترکیبی، کیفی بودن پارامترهای تاثیرگذار و کاهش خطا در کمی کردن این پارامترهای کیفی به مقادیر کمی می باشد.
    کلید واژگان: تصمیم گیری چند معیاره, انتخاب تامین کنندگان, منطق فازی, فرآیند تحلیل سلسله مراتبی, تاپسیس
    Mohammad Ali Beheshtinia *, Vahid Nemati-Abozar
    One of the most important aspects of designing a supply chain is the matter of supplier selection. It’s a complicated issue because suppliers should satisfy some criteria and ranking those leads to a MCDM problem. Therefore, a structured and systematic approach is required to solve this problem. In this article, we address supplier selection problem in advertising industry and propose two new criteria. Correspondingly, in order to evaluate suppliers in the industry a hybrid approach is proposed which combines fuzzy AHP with fuzzy TOPSIS techniques. Each method has its cons and pros we try to use the advantages of the both methods in the proposed hybrid approach. On the other hand, the related parameters in this decision making problem are qualitative. Some errors could happen in transformation of the qualitative parameters to quantitative ones. Accordingly, in transforming procedure we use fuzzy theory to reduce these errors.
    Keywords: MCDM, Supplier selection, Fuzzy logic, AHP, TOPSIS
  • Fatemeh Ranjbar Tezenji, Mohammad Mohammadi, Seyed Hamid Reza Pasandideh, Mehrdad Nouri Koupaei
    Facility/supplier location-allocation and supplier selection-order allocation are two of the most important decisions for both designing and operation supply chains. Conventionally these two issues will be discussed separately. Due to similarity and relationship between these issues, in this paper we investigate an integrated model for supplier location-selection and order allocation problem in supply chain management (SCM). The objective function is set in such a way that the establishment costs, inventory-related costs, and transportation costs as quantitative criteria have been minimized. As regards, the costs are uncertainty, therefore we have considered them stochastic. This paper developed a bi-objective model for optimization of the mean and variance of costs. Also, the capacities of supplier are limited. This mixed integer nonlinear program solved with two meta-heuristics
    Methods
    genetic algorithm and simulated annealing. Finally, these two methods compared in terms of both solution quality and computational time. To obtain a high degree of validity and reliability GAMS software and meta-heuristic results in small sizes compared.
    Keywords: location-allocation, Supplier selection, inventory management, Multi-objective problem, meta, heuristic, Multiple Attribute Decision Making (MADM)
  • Amin Mahmoudi, Soheil Sadi, Nezhad, Ahmad Makui
    Supplier selection problem (SSP) has become critical objectives of purchasing departments because of its significant effect toward successful logistic and supply chain management (SCM).In real life situations, SSP parameters are often imprecise, vague, uncertain or incomplete. In this respect, fuzzy set theory is the best-developed approach to formulate these uncertainties. In this paper, we have extended fuzzy VIKOR using an efficient fuzzy distance measure to solve applicable SSP under group decision making process. In our study, an efficient fuzzy VIKOR for solving SSP under group decision making process is presented in which decision makers have different weights in decision making process and its opinions are collected in the form of linguistic variables. In our methodology, preference ratio method is applied to rank the alternatives. Ultimately, several numerical illustrations and sensitivity analyses are performed to demonstrate the applicability of the proposed method.
    Keywords: Supplier Selection, MADM, fuzzy VIKOR, Fuzzy Distance, group decision making
  • Saeed Alaei, Farid Khoshalhan
    We investigate a one-buyer-multi-vendor co-ordination model with vendor selection problemin a centralized supply chain. In the proposed model, the buyer selects one or more vendorsand orders an appropriate quantity. The quantity discount mechanism is used by all vendors with the aim of coordinating the supply chain. We formulate the problem as a multi objective mixed integer nonlinear mathematical model. Using the Global Criterion method, the proposed model is transformed into a single objective optimization problem. Since, the problem is NP-hard, we propose four meta-heuristic algorithms: Particle Swarm Optimization (PSO), Scatter Search (SS), Population based Harmony Search (HS-pop) and Harmony Search based Cultural Algorithm (HS-CA). The Taguchi’s robust tuning method is applied in order to estimate the optimum values of parameters. Then, the solution quality and computational time of algorithms are compared.
    Keywords: Supply chain coordination, Meta, heuristics, Taguchi method, Supplier selection, Cultural algorithm, Harmony search
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال