به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "visualization" در نشریات گروه "برق"

تکرار جستجوی کلیدواژه «visualization» در نشریات گروه «فنی و مهندسی»
جستجوی visualization در مقالات مجلات علمی
  • سعید روحانی*، طاهره پزشکی، بابک سهرابی

    یکی از مباحث پژوهشی مهم امروز در حوزه فناوری اطلاعات و فناوری استفاده از دانش نهفته در داده هایی است که امروزه با سرعت بالا، حجم زیاد و با تنوع فراوان در فرمت داده تولید می شوند. داده هایی با چنین ویژگی هایی را کلان داده می نامند. استخراج، پردازش و بصری سازی نتایج حاصل از کلان داده امروزه به یکی از دغدغه های دانشمندان علم داده تبدیل شده است. گفتنی است که امروزه زیر ساخت‍ ها، روش ها و ابزارهای بسیاری برای تحلیل کلان داده توسعه یافته اند. هدف این مقاله ارایه راهکاری برای استخراج و بصری سازی داده های شبکه اجتماعی توییتر به صورت بلادرنگ با حذف پایگاه های داده به عنوان نمونه ای از تحلیل کلان داده است. در این پژوهش یکی از راه حل های بصری سازی بلادرنگ، با استفاده از داده های توییتر به عنوان جریان ورودی، از آپاچی استورم به عنوان پلتفرم پردازشی و از D3.jsبرای نمایش داده ها ارایه خواهد شد؛ در نهایت داشبورد طراحی شده با استفاده از روش طراحی آزمایش ها و آزمون های آماری از نظر زمان طی شده برای پاسخ (Latency). در انواع پیکره بندی های مختلف آپاچی استورم مورد ارزیابی قرار گرفته و در نهایت بلادرنگ بودن با میانگین زمان پاسخ برابر یک دقیقه و سی ثانیه تایید شد.

    کلید واژگان: کلان داده, بصری سازی, داشبورد بلادرنگ
    Saeed Rouhani*, Tahereh Pezeshki, Babak Sohrabi

    One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholars. The impact of big data on information analysis can be traced to four different parts. The first part is data extraction and processing, the second part is data analysis, the third part is data storage, and finally the visualization of the data. In the field of big data processing, in various studies, different categories have been presented. For example, in the studies of Hashim et al., big data processing is divided into two categories. These two types are: batch and real time. These two categories of processing, which nowadays are standard in any comprehensive big data solution, also have been introduced in Abawajy studies: batch processing is related to offline processing, and real-time processing is usually used to analyze the streaming data without any need to storage of data on disk. As data flows from various sources, the data is analyzed and processed real time, for immediate insight. As today's world is rapidly changing and survival in today's competitive world requires instant decision-making based on flows of data, streaming data analysis is becoming increasingly important. On the other hand, one of the great valuable sources of streaming data is the data generated by social networks’ users such as Twitter. Social networks data sources are very rich sources for analysis as they come from the opinions and opinions of their users. As discussed earlier, and since previous studies such as Flash's studies have focused more on batch analysis (offline data), this study has attempted to investigate a variety of tools and infrastructures related to big streaming data, and finally design a real-time dashboard based on Twitter social network streaming data. The following article addresses two research questions: 1) How to design and implement a real-time dashboard based on social networks data? 2) Which different configurations are best suited for real-time dashboard analysis and visualization? In other words, the purpose of this article is to provide a solution for extracting and visualizing Twitter's social network streaming data by deleting databases, as an examples of big data real time analysis. In this research, we used Twitter streaming data as an input, Apache Storm as a processing platform and D3.js as a visualization tool. Finally, the designed dashboard was evaluated using Design of Experiment method and other statistical tests in various types of Apache Storm configurations and eventually it was proved that the dashboard is real time with an average response time for 1 minute and 30 seconds.

    Keywords: Big data, visualization, real time dashboard
  • Amirreza Ghahremani, Mojtaba Jafari, Mohammad Ahari, Mohammad Hassan Saidi, Ahmad Hajinezhad, Ali Asghar Mozaffari
    In the present work the spray characteristics of bio-ethanol and its blends have been experimentally and theoretically investigated. To have a comprehensive study, the effects of ambient condition and injection pressure on the spray of different blends have been considered. Macroscopic and microscopic characteristics of spray such as tip penetration length, cone angle, projected area, volume, Sauter Mean Diameter (SMD), and Ohnesorge number are investigated precisely. Besides, air entrainment and atomization analysis have been carried out to improve mixture formation process. Using curve fitting and least squares method, theoretical correlations have been suggested in such a way to predict experimental results with the accuracy of 9.9%. To have a good estimation for the calculated parameters, uncertainty analysis has been performed. The results demonstrate enhancing the injection pressure or decreasing the ambient pressure, improve the atomization characteristics of spray. Moreover outcomes of this study indicate, spray tip penetration is enhanced by increasing the injection pressure or bio-ethanol percentage in the blend, while spray cone angle showing opposite behavior.
    Keywords: Bio-Fuel, Mixture Formation, Spray, Visualization, Schlieren
  • S. Esmaeilzadehha, Prof. M. Habibnejad Korayem*
    This paper focuses on a theoretical analysis of an AFM based nano-manipulation in liquid environment. To achievethis goal, major forces in liquid environment were reviewed and the of manipulation processes was modelled by introducing the effect of intermolecular forces and hydrodynamic forces. Dynamic behaviour of pushing a gold nanoparticle of 50-nm radius on a silicon substrate at a velocity of 100 nm/s was investigated. A virtual reality user interface was also implemented and evaluated in liquid environment so that the users can get a senseof forces. The results show that, in comparison to air, the required forces and time are increased by 2 and 6.5%, for sliding and 2 and 4.3% for rolling in liquid environment. Furthermore for various submerged lengths of the cantilever in water, forces and time value are varied 8 and 10.5% respectively.Based on the simulation a result, sliding occurs in nominal values and critical forces and manipulation time in liquid environment increases over the values. For biologicalmanipulation purposes liquid environment is superior in comparison to air and the obtained results are verified by existing experimental.
    Keywords: Visualization, Nano, manipulation, Atomic Force Microscopy, Liquid Forces
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال