به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

machine learning

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه machine learning در نشریات گروه فنی و مهندسی
  • تحلیل خرابی های کوپلینگ با داده های پایش وضعیت با رویکرد یادگیری ماشین
    رضا صادقی، علی حسین زاده کاشان*، بختیار استادی

    کوپلینگ ها در صنعت کاربرد بسیاری داشته و این تجهیزات با توجه به چرخش مداوم، همیشه در معرض خرابی هستند. ‏تجزیه وتحلیل ارتعاش یک تکنیک مناسب برای تحلیل خرابی ها و تشخیص حالات خرابی تجهیزات دوار است. هدف این پژوهش تحلیل ‏خرابی های رخ داده در یک کوپلینگ است که داده های آن در حالت عادی و سه حالت نقص با چهار سنسور متصل به کوپلینگ ‏جمع آوری شده است. بدین منظور دو نوع استخراج ویژگی متفاوت استفاده شده و همچنین از هفت الگوریتم یادگیری ماشین و یک ‏الگوریتم یادگیری عمیق برای طبقه بندی حالات بهره برده شده است. در این پژوهش به بررسی کارکرد هر کدام از الگوریتم های ‏پیاده سازی شده و اهمیت ویژگی های استخراجی پرداخته و به بررسی نقش سنسورها و بررسی اهمیت آن ها برای کاهش تعداد سنسور ها ‏پرداخته شده است. از نتایج این پژوهش می توان به تعیین اهمیت بالای ویژگی های حوزه فرکانس در دقت مدل های اجراشده و همچنین ‏کارایی بالای دو عدد از سنسور ها برای طبقه بندی اشاره نمود.‏

    کلید واژگان: نگهداری و تعمیرات پیشگویانه، یادگیری ماشین، تحلیل خرابی، تجهیزات دوار
    Coupling failure analysis using condition monitoring data with machine learning approach
    Reza Sadeghi, Bakhtiar Ostadi

    Couplings are widely used in the industry and this equipment are always subject to defects and failures due to continuous rotation. Vibration analysis is a suitable technique for failure analysis and failure detection of rotating equipment. The purpose of this research is to analyze the failures that occurred in a coupling, whose data was collected in normal state and three failure states with four sensors connected to the coupling. For this purpose, two different types of feature extraction have been used, and seven machine learning algorithms and one deep learning algorithm have been used to classify situations. In this research, the performance of each of the implemented algorithms and the importance of extracted features have been investigated, and the role of sensors and their importance to reduce the number of sensors have been investigated. From the results of this research, we can point out the high importance of the features of the frequency domain in the accuracy of the implemented models, as well as the high efficiency of two sensors for classification.

    Keywords: Predictive Maintenance, Machine Learning, Failure Analysis, Rotating Equipment
  • Hooman Pourrostami, Seyed Amirreza Alavi, Ahar Hosseeini, Mobina Mousapour Mamoudan, Fariborz Jolai *, Amir Aghsami
    Diabetes poses significant challenges due to its prevalence and the potential consequences of inaccurate or delayed diagnosis. This study focuses on enhancing prediction reliability to mitigate such risks. Initially, it identifies diabetes-related factors through correlation analysis with the target variable and implements models to address missing data. Subsequently, various imputation methods including CART, GMM, and RFR are employed to evaluate these factors. Results from each imputation scenario inform the selection of the most effective method. The study then employs ensemble algorithms like AdaBoost, Bagging, Gradient Boosting, and RF to enhance classification model accuracy. Further refinement is achieved by optimizing hyper-parameters through grid search. Evaluation involves comparing model predictions with those of medical professionals to assess accuracy. The findings reveal superior performance of optimized machine learning models over human predictions, indicating potential for improved diagnosis accuracy and reduced medical errors. This research contributes to advancing predictive modeling in diabetes diagnosis, offering prospects for enhanced community health and reduced socioeconomic burdens.
    Keywords: Diabetes, Prediction, Machine Learning, Ensemble Learning, Gaussian Mixture Models, Imputation Methods
  • Mirmohammad Musavi, Ali Bozorgi-Amiri *
    This study addresses the Hub Location-Routing Problem (HLRP) in transportation networks, considering the inherent uncertainty in travel times between nodes. We employed a method centered on data-driven robust optimization, utilizing Support Vector Clustering (SVC) to form an uncertainty set grounded in empirical data. The proposed methodology is compared against traditional uncertainty sets, showcasing its superior performance in providing robust solutions. A comprehensive case study on a retail store's transportation network in Tehran is presented, demonstrating significant differences in hub locations, allocations, and vehicle routes between deterministic and robust models. The SVC-based model proves to be particularly effective, yielding substantially improved objective function values compared to polyhedral and box uncertainty sets. The study concludes by highlighting the practical significance of this research and suggesting future directions for advancing transportation network optimization under uncertainty.
    Keywords: Robust Optimization, Hub Location, Machine Learning, Data-Driven Approach, Support Vector Clustering
  • Naser Abdali, Mohammad Vaezi, Masoud Rabani *, Amir Aghsami
    One of the constant problems that people with mental health conditions are faced with now is that they cannot establish a good relationship with their therapist, or the client's disease type is not in the therapist's specialty. These clients may not receive adequate treatment and stop the therapy before feeling well. Therefore, the classification of mental patients based on their disorder types and allocating a therapist with the same expertise to them could lead to better treatment and improve the quality of the therapy sessions. This paper will compare several machine learning (ML) algorithms to classify patients with mental conditions. Moreover, benefiting from the best ML algorithm, patients will be categorized into different classes based on their disorder types. Finally, a mathematical model will be developed to determine the allocation policy of therapists to each group of patients to maximize the summation of the utilization between therapists and patients. To explore the implementation of the proposed method, we have conducted a real-life case study to assess the validation of the model.
    Keywords: Mental Health, Data-Driven Decision-Making, Scheduling, Mathematical Modeling, Machine Learning, Patient Allocation
  • Mehdi Dadehbeigi, Ali Taherinezhad, Alireza Alinezhad*

    Today, data mining and machine learning are recognized as tools for extracting knowledge from large datasets with diverse characteristics. With the increasing volume and complexity of information in various fields, decision-making has become more challenging for managers and decision-making units. Data Envelopment Analysis (DEA) is a tool that aids managers in measuring the efficiency of the units under their supervision. Another challenge for managers involves selecting and ranking options based on specific criteria. Choosing an appropriate multi-criteria decision-making (MCDM) technique is crucial in such cases. With the spread of COVID-19 and the significant financial, economic, and human losses it caused, data mining has once again played a role in improving outcomes, predicting trends, and reducing these losses by identifying patterns in the data. This paper aims to assess and predict the efficiency of countries in preventing and treating COVID-19 by combining DEA and MCDM models with machine learning models. By evaluating decision-making units and utilizing available data, decision-makers are better equipped to make effective decisions in this area. Computational results are presented in detail and discussed in depth.

    Keywords: Data Mining, Machine Learning, Data Envelopment Analysis, Multi-Criteria Decisionmaking, COVID-19
  • JIE-SHIN Lin, CHIH-HAO TSAI *
    The accelerated digital transformation in the contemporary business landscape, propelled by the Fourth Industrial Revolution, has fundamentally reshaped marketing research practices. This study leverages machine learning techniques and big data analytics to extract critical customer value propositions from extensive online reviews, aligning with predictive marketing strategies. Using a hybrid approach that combines qualitative and quantitative analyses, the research examines 8,290 customer reviews sourced from an online platform within the tourism industry. Two advanced analytical techniques were applied: clustering analysis to identify 20 distinct value components prioritized by tourists and associative rule mining to uncover seven essential patterns embedded in customer feedback. The results highlight the potential of big data and machine learning in accelerating marketing research processes, improving precision, and lowering operational costs. The findings emphasize the transformative role of digital tools in modern marketing practices, enabling businesses to enhance customer satisfaction, optimize services, and maintain competitive advantages in a data-driven economy.
    Keywords: Big Data Analytics, Marketing Research, Industry 4.0, Machine Learning, Value Creation
  • Ashraf Reeyazati *, Reza Samizadeh
    This study aims to provide a comprehensive evaluation of current machine learning (ML) algorithms employed in targeted and personalized advertising. It reveals key findings and conclusions from a wide range of sources, offering readers a concise summary. The study addresses the gap by identifying and analyzing the most significant machine learning-based targeting methods utilized in the recent studies. This helps readers understand the strengths and weaknesses of different approaches and keeps them up-to-date with the most recent advancements and best practices. Employing the PRISMA methodology, the review systematically examines existing literature on ML-driven targeted advertising. It identifies effective ML methods and strategies, presenting real-world examples to illustrate their practical implementation. Reviewing key findings from existing literature, the analysis identifies the most effective ML methods for targeted advertising. It also examines three research questions across three key dimensions: targeting, personalizing, and predicting customer preferences. This study proposes a novel theoretical framework that elucidates the application of ML in targeted advertising. Specifically, the study explores ML algorithms that enhance precision in each dimension. Key models include Long Short-Term Memory (LSTM) networks for analyzing historical customer data, Convolutional Neural Networks (CNN) for image recognition tasks, and Factorization Machines for capturing feature interactions in click-through rate (CTR) predictions. Additionally, traditional models such as logistic regression, decision trees, random forests, and support vector machines (SVM) are utilized for classification tasks, while unsupervised learning techniques like k-means clustering and hierarchical clustering facilitate user segmentation based on behavioral and demographic similarities. These models collectively enable marketers to derive actionable insights, optimize advertising content, and improve overall campaign performance. By consolidating key findings from existing literature on ML-driven targeted advertising, this study offers a valuable resource for understanding current trends and gaps. It also proposes future research directions, highlighting potential areas for further exploration, which can inspire new studies and innovations in the field.
    Keywords: Artificial Intelligence, Machine Learning, Marketing Optimization, Targeted Advertising, Personalized Advertising
  • Seyed Sadegh Hosseini, Mohammadreza Yamaghani *, Soodabeh Poorzaker Arabani

    Emotional computing synergizes the understanding and quantification of emotions, drawing on diverse data sources such as text, audio, and visual indicators. A challenge arises when attempting to discern authentic emotions from those concealed deliberately via facial cues, vocal nuances, and other communicative behaviors. Integrating multiple physiological and behavioural signals can give more profound insights into an individual's emotional state. Historically, research has predominantly concentrated on a singular facet of emotional computing. In contrast, our study offers an in-depth exploration of its pivotal domains, encompassing emotional models, Databases (DBs), and contemporary developments. We begin by elucidating two prevalent emotional models and then examine a renowned sentiment analysis DB. Subsequently, we delve into cutting-edge emotion detection and analysis methodologies across varied sensory channels, elaborating on their design and operational principles. In conclusion, the fundamental principles of emotional computing and its real-world implications are discussed. This review endeavors to provide researchers from academia and industry with a holistic understanding of the latest progress in this domain.

    Keywords: Emotion Recognition, Machine Learning, Deep Learning, Multimodal Emotions, Dataset, Information Fusion, Feature Extraction
  • Mohammad Barzegar, Aliakbar Hasani *
    Customer churn is one of the challenges of business management in today's complex competitive environment. For this purpose, the organization must have an efficient system to detect and analyze the factors influencing customer churn. To conduct this research, an attempt has been made to build a hybrid model based on data mining approaches from information related to 5830 customers of a chain store (demographic information and information based on customer purchase records) with 17 qualitative and quantitative characteristics. The features of higher importance were identified to build the model in the first stage using the logistic regression algorithm. In the second stage, the support vector machine algorithm, a critical supervised learning algorithm, was used to classify the customers and rank the essential features. Finally, the proposed model has been implemented as a case study in the chain store industry. The results indicate the optimal efficiency of the proposed analysis method. This research has been done to identify the influential factors in customer churn and focus on providing new solutions to reduce churn in the retail industry. Also, the results show that age, marital status, and average monthly income from the set of demographic features and how to get to know the store, the share of online shopping, and special sales from the set of features related to customer transaction records are among the most important factors affecting customer churn. In addition, practical suggestions have been presented that can be used for tactical and strategic planning of chain stores to attract and retain customers.
    Keywords: Customer Churn, Data Mining, Logistic Regression, Support Vector Machine, Machine Learning
  • Md Jakir Hossain Molla, Sk Md Obaidullah, Soumya Sen, Gerhard-Wilhelm Weber, Chiranjibe Jana *
    This study presents a novel predictive model for engineering graduates' placement outcomes using Machine Learning (ML) techniques. The model is built on a comprehensive dataset that includes students' performance in various skill areas and their subsequent placement status. By employing a range of ML algorithms, the study evaluates their performance in terms of accuracy. The findings reveal the Customized Random Forest Model (CRFM) algorithm as the most accurate, with a prediction rate of 89%. Furthermore, the study also evaluates the target job domain or field in which students aim to secure placements as well as their target salary packages using the Customized Principal Component Analysis (CPCA) model. The research highlights the importance of various skills, such as programming, aptitude, and domain knowledge, in determining the employability of engineering graduates. The study underscores the importance of various skills, such as programming, aptitude, and domain knowledge, in determining the employability of engineering graduates. The proposed model has directed and practical implications for educational institutions, policymakers, and employers, enabling them to identify the key factors that influence the employability of engineering graduates and develop strategies to enhance their employability.
    Keywords: Engineering Graduates, Employability, Placement Outcomes, Data-Driven Approach, Predictive Analytics, Machine Learning
  • امیرحسین مسیبی اطاقسرا، عبدالله آراسته*، نیکبخش جوادیان
    هدف

    هدف از این تحقیق پیش بینی تقاضای روزانه محصول ماست سون شرکت لبنیات کاله آمل با استفاده از عوامل تاثیرگذار خارجی مانند شرایط آب و هوایی، روزهای خاص تقویم و قیمت محصول می باشد. این پیش بینی به ویژه به دلیل ماهیت فاسدشدنی محصولات که دارای نرخ بالایی از زوال هستند، بسیار مهم است.

    روش شناسی پژوهش: 

    این مطالعه از مجموعه داده های عمومی شامل 12 ماه سابقه تقاضا از فروشگاه های مختلف خرده فروشی مواد غذایی استفاده می کند. در ابتدا، این تحقیق از تکنیک پیش بینی سری های زمانی کلاسیک، به ویژه مدل میانگین متحرک همبسته خودکار یکپارچه فصلی با عوامل برون زا (SARIMAX) استفاده می کند. متعاقبا، روش های پیشرفته تر یادگیری ماشین، ازجمله شبکه های عصبی حافظه کوتاه مدت (LSTM) و شبکه های عصبی کانولوشنال (CNN) را پیاده سازی می کند. عملکرد این مدل ها با استفاده از روش های اندازه گیری دقیق مانند ریشه میانگین مربعات خطا (RMSE) و میانگین درصد مطلق خطا (MAPE) ارزیابی و مقایسه می شود.

    یافته ها

    یافته ها نشان می دهد که روش CNN از نظر دقت از سایر روش های پیش بینی برتری دارد. علاوه بر این، مدل LSTM نیز عملکرد خوبی را نشان می دهد، اگرچه به برتری روش CNN نیست.

    اصالت/ارزش افزوده علمی: 

    این تحقیق با تمرکز بر پیش بینی تقاضای کالاهای فاسدشدنی که به دلیل نرخ فرسودگی بالای آن ها اهمیت دوچندانی دارد، به ادبیات موجود کمک می کند. همچنین علاقه و اثربخشی رو به رشد تکنیک های یادگیری ماشینی پیشرفته، به ویژه CNN و LSTM را در بهبود دقت پیش بینی های تقاضا برجسته می کند. این مطالعه بینش های ارزشمندی را برای مشاغل در صنعت لبنیات با هدف افزایش سود اقتصادی و رقابت آن ها از طریق پیش بینی بهتر تقاضا ارایه می دهد.

    کلید واژگان: پیش بینی تقاضا، شبکه عصبی، کالاهای فسادپذیر، یادگیری ماشین
    Amirhossein Mosayyebi Otaghsara, Abdollah Arasteh *, Nikbakhsh Javadian
    Purpose

    The purpose of this research is to predict the daily demand for seven yogurt products from the Kale Amol Dairy Products Company, leveraging external influencing factors such as weather conditions, specific calendar days, and product prices. This forecasting is particularly crucial due to the perishable nature of the products, which have a high rate of deterioration.

    Methodology

    This study employs a public dataset comprising 12 months of demand history from various food retail stores. Initially, the research uses the classic time series forecasting technique, specifically the Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMAX). Subsequently, it implements more advanced machine learning methods, including Long Short-Term Memory (LSTM) neural networks and Convolutional Neural Networks (CNN). The performance of these models is evaluated and compared using accuracy measurement methods such as Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).

    Findings

    The findings reveal that the CNN method outperforms other forecasting methods in terms of accuracy. Additionally, the LSTM model also demonstrates good performance, although it is not as superior as the CNN method.

    Originality/Value:

     This research contributes to the existing literature by focusing on the demand forecasting of perishable goods, which has double importance due to their high deterioration rate. It also highlights the growing interest and effectiveness of advanced machine learning techniques, particularly CNN and LSTM, in improving the accuracy of demand forecasts. This study provides valuable insights for businesses in the dairy industry aiming to enhance their economic profit and competitiveness through better demand forecasting.

    Keywords: Demand Forecasting, Neural Network, Perishable Goods, Machine Learning
  • MARCO ANTONIO DIAZ MARTINEZ *, REINA VERONICA ROMAN SALINAS, SANTOS RUIZ HERNANDEZ, GABRIELA CERVANTES ZUBIRIAS, MARIO ALBERTO MORALES RODRIGUEZ

    The aim of this research is to determine how the implementation of machine learning has generated advantages in the field of engineering. Through a systematic review of the literature, it seeks to understand the importance of machine learning and its various applications in engineering, such as equipment maintenance, business demand forecasting, production chain optimization, customer service, and quality control. In this article, we conduct a systematic review and bibliometric analysis to explore the current state of research on machine learning and Industry 4.0 applications in the field of industrial engineering. Our goal is to identify established and emerging fields of research to guide future research. To carry out this study, we initially identified 639 scientific journal publications indexed by publishers such as Ebsco essentials, ScienceDirect, IEEEXplore, and MDPI, collected from 1 January of 2015 to May 2023. Subsequently, a group of specialists evaluated these publications, carefully selecting 65 of them that were placed in the literature review section and that were considered relevant to our analysis. In a second stage, we applied a detailed analysis using MAXQDA v.2020 software on our collected data, focusing on citation and keyword evaluation. This approach allowed us to gain a deeper understanding of trends and connections in existing research in this field.

    Keywords: Machine Learning, Industry 4.0, Supply Chain, Maintenance, Artificial Intelligence, Deep Learning, Additive Manufacturing
  • محراب تنهاییان*، فاطمه رئیسی، حمید صفاری
    رضایت شغلی منجر به افزایش بهرهوری و کارایی سازمانها می شود. با توجه به خطرات احتمالی که واحدهای نگهداری و تعمیرات با آن مواجه هستند، باید تمرکز خاصی بر تصمیمات و اقدامات کارکنان آنها باشد. این مطالعه از یک رویکرد یادگیری ماشین برای تقویت عملکرد و رضایت شغلی واحدهای نگهداری و تعمیرات از منظر رعایت نکات بهداشت، ایمنی، محیط زیست و ارگونومی (HSEE) استفاده می کند. در این پژوهش ابتدا یک پرسشنامه استاندارد برای جمع آوری داده ها طراحی شده است که پایایی آن با استفاده از ضریب آلفای کرونباخ ارزیابی می شود. در گام بعد مدل های مختلف سیستم استنتاج عصبی-فازی به منظور تخمین رضایت شغلی بر اساس اطلاعات مربوط به HSEE اجرا گردید. در گام بعد،کارایی هر یک از افراد با استفاده از خطای محاسبه شده تحلیل گردید. در شبکه استنتاج عصبی-فازی طراحی شده میانگین دسته های HSEE به عنوان ورودی مشخص و رضایت شغلی به عنوان خروجی در نظر گرفته شده است. نتایج حاکی از این است که افزایش رضایت شغلی کارکنان منوط به تمرکز روی بهبود مسائل مربوط به ارگونومی و محیط زیست می باشد.
    کلید واژگان: ایمنی، رضایت شغلی، یادگیری ماشین، سیستم استنتاج عصبی-فازی
    Mehrab Tanhaeean *, Fatemeh Raeisi, Hamid Saffari
    Job satisfaction plays a crucial role in enhancing productivity and reveals intriguing insights that impact the operational effectiveness of organizations. Due to the importance of maintenance units, special attention should be paid to their employees. This study employs a machine learning approach to enhance the performance and job satisfaction of maintenance units through the focus on health, safety, environment, and ergonomics (HSEE). A standardized questionnaire is developed for on HSEE data. Within the neural-fuzzy inference network, inputs such as health and safety protocols, environmental data collection, and its reliability is assessed using Cronbach's alpha coefficient. Subsequently, various adaptive neuro fuzzy inference system (ANFIS) models are utilized to predict job satisfaction based factors, and ergonomics are considered, while job satisfaction serves as the output. Following the selection of the optimal model, individual efficiency levels are assessed and scrutinized based on the calculated error. The findings suggest that enhancing employee job satisfaction relies on prioritizing the enhancement of ergonomics and the work environment.
    Keywords: Safety, Job Satisfaction, Machine Learning, Adaptive Neuro Fuzzy Inference System
  • زهرا سعیدی مبارکه، حسین عموزادخلیلی*
    این تحقیق به معرفی یک مدل بهینه سازی چندهدفه غیرخطی می پردازد که برای بهینه سازی هم زمان سود و رضایت مشتری در سیستم های تولیدی طراحی شده است. مساله مورد بررسی شامل بهینه سازی در شرایط پیچیده و نامطمئن تولید است که با محدودیت های منابع و زمان مواجه است. مدل پیشنهادی با به کارگیری توابع هدف غیرخطی و تحلیل دقیق شرایط عملیاتی، راه حل های بهینه ای را برای مدیران ارائه می دهد. این منطق فازی با الگوریتم های یادگیری ماشین نظیر شبکه های عصبی و یادگیری تقویتی ترکیب شده است تا مدلی هوشمند و انعطاف پذیر ایجاد شود که به طور موثری با تغییرات ناگهانی در محیط های پویا سازگار می شود. این مدل از ترکیب الگوریتم های ژنتیک مرتب سازی غیر مسلط چهارم (NSGA-IV) و شبکه انتخاب متغیر (VSN) در یک چارچوب ترکیبی بهره می برد و رویکردی پیشرفته و چندوجهی برای حل مسائل پیچیده بهینه سازی چندهدفه ارائه می کند. نتایج پارتو-بهینه حاصل از این مدل نشان دهنده عملکرد کارآمد و بهینه آن است. مدل پیشنهادی می تواند به عنوان منبعی عملی و راهبردی برای مدیران و تصمیم گیران در بهینه سازی تولید و ارتقاء رضایت مشتری در شرایط نامطمئن و پویا مورد استفاده قرار گیرد.
    کلید واژگان: بهینه سازی چندهدفه، منطق فازی، یادگیری ماشین، الگوریتم فرا ابتکاری ترکیبی چند هدفه
    Zahra Saeidi Mobarakeh, Hossein Amoozadkhalili *
    This research introduces a nonlinear multi-objective optimization model that is designed to simultaneously optimize profit and customer satisfaction in production systems. The investigated problem includes optimization in complex and uncertain conditions of production, which is faced with resource and time limitations. The proposed model provides optimal solutions for managers by using non-linear objective functions and detailed analysis of operating conditions. This fuzzy logic is combined with machine learning algorithms such as neural networks and reinforcement learning to create an intelligent and flexible model that effectively adapts to sudden changes in dynamic environments. This model uses the combination of non-dominant fourth sorting genetic algorithms (NSGA-IV) and variable selection network (VSN) in a hybrid framework and provides an advanced and multi-faceted approach to solving complex multi-objective optimization problems. Pareto-optimal results obtained from this model indicate its efficient and optimal performance. The proposed model can be used as a practical and strategic source for managers and decision makers in optimizing production and improving customer satisfaction in uncertain and dynamic conditions.
    Keywords: Multi-Objective Optimization, Fuzzy Logic, Machine Learning, Hybrid Multi-Objective Meta-Heuristic Algorithm
  • محمد صفائی، سمیه مغاری*، محمدکاظم فلاح، مهرداد غزنوی
    هدف

    این پژوهش با هدف ارایه یک رویکرد کاربرد-محور برای توسعه مدل های یادگیری ماشین انجام شده است که توازن میان دقت مدل، سرعت پردازش و مصرف بهینه منابع را در کاربردهایی نظیر سیستم های هوشمند پوشیدنی مد نظر قرار دهد.

    روش شناسی پژوهش: 

    مجموعه ای از مدل ها بر اساس معماری انتزاع و همجوشی تصمیم توسعه داده شده و سپس با رویکرد تصمیم گیری چندمعیاره مدل های مناسب برای کاربرد مورد نظر را شناسایی می کنیم. رویکرد پیشنهادی دارای سه فاز اصلی است: 1- توسعه مدل های مبتنی بر ADFA، 2- تعریف معیارهای ارزیابی و 3- انتخاب مدل با استفاده از روش فرآیند تحلیل سلسله مراتبی فازی.

    یافته ها

    نتایج تجربی حاصل از این پژوهش نشان دهنده کارایی این رویکرد در توسعه مدل های یادگیری ماشین مناسب برای کاربردهای مربوط به تجهیزات پوشیدنی مانند عینک های هوشمند است.

    اصالت/ارزش افزوده علمی: 

    در این پژوهش سه نوآوری ارایه شده است: 1- استفاده از ADFA برای توسعه مدل های دسته بندی حروف دست نویس فارسی، 2- تعریف یک انتزاع جدید برای خلاصه سازی تصاویر حروف دست نویس و 3- توسعه رویکرد مبتنی بر تصمیم گیری چندمعیاره فازی برای نگاشت مدل های توسعه یافته در ADFA به کاربردهای دنیای واقعی.

    کلید واژگان: دسته بندی حروف دست نویس فارسی، FAHP، ADFA، یادگیری ماشین
    Mohammad Safaei, Somaye Moghari *, Mohammadkazem Fallah, Mehrdad Ghaznavi
    Purpose

    This research presents an application-oriented approach for developing machine learning models that consider the trade-off between model accuracy, processing speed, and efficient resource utilization, focusing on applications such as wearable smart systems.

    Methodology

    A set of models is developed based on the Abstraction and Decision Fusion Architecture (ADFA), and then, using a multi-criteria decision-making approach, the appropriate models for the intended application are identified. The proposed methodology has three main phases: 1) developing models based on the ADFA, 2) defining evaluation criteria, and 3) selecting models using the Fuzzy Analytic Hierarchy Process (FAHP).

    Findings

    The experimental results of this research demonstrate the effectiveness of this approach in developing suitable machine learning models for applications related to wearable devices, such as smart glasses.

    Originality/Value: 

    This research introduces three innovations: 1) the use of ADFA for developing models for the classification of Persian handwritten characters, 2) defining a new abstraction for summarizing handwritten character images, and 3) developing a fuzzy multi-criteria decision-making approach for mapping the developed models in the ADFA to real-world applications.

    Keywords: Abstraction, Decision Fusion Architecture, Classification Of Persian Handwritten Characters, Fuzzy Analytic Hierarchy Process, Machine Learning
  • Arifa Khan*, Saravanan P

    Optimizing production in the plastic extrusion industry is a pivotal task for small scale industries. To enhance the efficiency in today’s competitive market being a small-scale manufacturer over their peers is challenging. With the limited resources, having constraints on manpower, capital, space, often facing fluctuations in demand and production, simultaneously maintaining high quality became very important for the success. Among the plethora of KPIS used in manufacturing, Overall Equipment Effectiveness (OEE) stands out as corner stone. In this study, we collected real-world data from a plastic extrusion company. i.e., an HDPE Pipe manufacturing company. It serves as the backdrop for our study, this is based on the plastic extrusion sector and set out a goal of enhancing OEE through a comparative investigation of various ML models.  To forecast and estimate OEE values, we used various Machine Learning models and examine each algorithm’s performance using metrics like Mean Squared Error (MSE) and model comparisons using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), creating a comprehensive picture of each algorithm’s strength which enables the small businesses to make informed decisions and empowers them to stay agile and adapt to the changes in the manufacturing environment.

    Keywords: Machine Learning, Overall Equipment Effectiveness, Deep Learning, Akaike Information Criterion, Bayesian Information Criterion
  • Seyed Emadi, Abolfazl Sadeghian *, Mozhde Rabbani, Hassan Dehghan Dehnavi
    We consider a continuous model of the optimal control of the customer dynamics based on marketing policies as a non-autonomous system of ODEs. The model tracks the history of the simultaneous changes from the beginning to the current time for the evolution of the company's regular, referral, and potential customers. We then present a new supervised machine-learning algorithm for the numerical simulation of the problem. The proposed learning algorithm implements a polynomial kernel to simplify the formulation of the method. To avoid computational complexity, the Bernstein kernels are used to get a simple optimization marketing strategy by using the Support Vector Regression (SVR) in a least-squares framework. Some numerical experiments are carried out to support the proposed model and the method. The method provides approximate numerical results with high accuracy by kernels of polynomials of low degree. The running time of the technique is also illustrated versus the increasing number of training points to see the polynomial behavior of the running time.
    Keywords: Optimal Control, Machine Learning, Customer Dynamics, Marketing Models, LS-SVR
  • Yas Ghiasi, Mehdi Seifbarghy, Davar Pishva *

    This paper considers an accurate and efficient diabetes detection scheme via machine learning. It uses the science of data mining and pattern matching in its diabetes diagnosis process. It implements and evaluates 4 machine learning classification algorithms, namely Decision tree, Random Forest, XGBoost and LGBM. Then selects and introduces the one that performs the best towards its objective using multi-criteria decision-making methods. Its results reveal that Random Forest algorithm outperformed other algorithms with higher accuracy. It also examines the details of features that have a greater effect on diabetes detection. Considering that diabetes is one of the most deadly, disabling, and costly diseases observed today, its alarmingly increasing rates, and difficulty of its diagnosis because of many vague signs and symptoms, utilization of such approach can help doctors increase accuracy of their diagnosis and treatment schemes. Hence, this paper uses the science of data mining as a tool to gather and analyze existing data on diabetes and help doctors with its diagnosis and treatment process. The main contribution of this paper can therefore be its applied nature to an essential field and accuracy of its pattern recognition via several analytical approaches.

    Keywords: Diabetes, Data Mining, Machine Learning, Multi-Criteria Decision-Making, MCDM, Tree-Based Algorithms
  • کامران بالانی، حسین صدر*، سید احمد عدالت پناه، مهناز منطقی پور، مژده نظری
    با توجه به بازار رقابتی صنعت بیمه و اشباع آن، حفظ مشتریان از مهم ترین اهداف کارگزاران بیمه به حساب می آید. زیرا برای جذب مشتری جدید علاوه بر ایجاد رابطه با بیمه گذار و جلب اطمینان وی، مستلزم صرف هزینه زیادی می باشد ، به طوری که هزینه جذب مشتریان جدید بسیار بیشتر از حفظ مشتریان موجود است. بر این اساس، استراتژی های بازاریابی، از محصول مداری تغییر کرده و بسیاری از شرکت ها به مدیریت ارتباط با مشتریان روی آورده اند.تعداد زیادی از شرکت ها و سازمان ها دریافته اند که حفظ و نگهداری مشتریان فعلی شان به عنوان گرانبهاترین سرمایه، ارزش بسیار بالایی دارند. استراتژی شرکت های بیمه ابتدا حفظ مشتریان فعلی و سپس جذب مشتریان جدید می باشد. در این راستا، شناسایی فاکتورهای موثر در رویگردانی مشتریان از اهمیت های بالایی برخوردار است. در این مقاله از روش های داده کاوی برای پیش بینی عوامل موثر در رویگردانی مشتریان استفاده شده است. بر اساس تجزیه و تحلیل نتایج بدست آمده مشخص شده است که کانال جذب مشتری، سابقه خرید و کاربری مکان بیمه شده به ترتیب از عوامل مهم در رویگردانی مشتریان در صنعت بیمه است.
    کلید واژگان: صنعت بیمه، استراتژی های بازاریابی، رویگردانی مشتری، داده کاوی، یادگیری ماشین
    Kamran Balani, Hossein Sadr *, Ahmad Edalatpanah, Mahnaz Manteghipour, Mojdeh Nazari
    Given the competitive market of the insurance industry, customer retention is one of the most important goals of insurance brokers. As a matter of fact, attracting a new customer as well as establishing a relationship with the insurer and gaining his trust requires a lot of money. However, the cost of attracting new customers is much more than retaining existing customers. Accordingly, marketing strategies have shifted from product-oriented and many companies have turned to customer relationship management.Companies and organizations have found that retaining their current customers as their most valuable asset is highly important. Therefore, the strategy of insurance companies is to first retain existing customers and then attract new customers. In this regard, identifying the effective factors in customer turnover is essential. In this paper, data mining methods are used to predict the factors affecting customer dissatisfaction. Based on the empirical results, it has been determined that the customer attraction channel, purchase history and place of insurer are important factors affecting customers dissatisfaction in the insurance industry, respectively.
    Keywords: Insurance Industry, Marketing Strategies, Customer Dissatisfaction, Data Mining, Machine Learning
  • سپیده چهره*، علی سرآبادانی

    ریزش مشتری یک اصطلاح مالی است که به از دست دادن مشتری اشاره دارد؛ امروزه با توجه به تعداد زیاد بانک ها، ریزش مشتریان از یک بانک به بانک دیگر تبدیل به دغدغه جدی برای بانک های مختلف شده است. بنابراین در این مقاله که برای مشتریان یک بانک گردآوری شده است، می توان با توجه به رفتار و ویژگی های مشتریان قبل از وقوع ریزش، به شناسایی مشتریانی که احتمال ریزش بالایی دارند پرداخت و با ارائه پیشنهادهایی آن ها را حفظ نمود. در بازاریابی همه بر این امر توافق دارند که حفظ یک مشتری از جذب یک مشتری جدید بسیار کم هزینه تر است، از این رو این مقاله به معرفی فازهای مختلف رویکرد پیش بینی مشتری ریزشی با کمک یادگیری ماشین پرداخته است. روش پیشنهادی ترکیبی از الگوریتم های جنگل تصادفی و بهینه سازی جایا می باشد و ریزش مشتری را بر اساس ویژگی های مختلف مشتری مانند سن، جنسیت، جغرافیا و موارد دیگر پیش-بینی می کند. نتایج حاصل از مدل پیشنهادی در مقاله به ترتیب در معیارهای Precision ، Recall و Accuracy برابر مقادیر91.41 درصد، 95.66 درصدو 93.35 درصد می باشد.

    کلید واژگان: الگوریتم جنگل تصادفی، بهینه سازی جایا، ریزش مشتری، یادگیری ماشینی
    Sepideh Chehreh *, Ali Sarabadani

    Customer churn is a financial term that refers to the loss of a customer; Today, due the large number of banks , the loss of customers from one bank to another has become a serious concern for different banks. Therefore, in this article, which has been compiled for the customers of a bank , it is possible to identify customers who have a high probability of falling by considering the behavior and characteristics of the customers before the fall occurs and to keep them by providing suggestions. In marketing, everyone agrees that keeping a customer is much less expensive than attracting a new customer, this article introduces the different phases of the approach of predicting customer churn with the help of machine learning. The proposed method is a combination of random forest algorithms and Jaya optimization, and customer dropout is based on different characteristics. Customer like age, Gender, graphs and cases It predicts more . The results of model in the article are 91.41%, 95.66% and 93.35% respectively in Precision , Recall and Accuracy criteria.

    Keywords: customer churn, Machine Learning, random forest algorithm, site optimization
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال