به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "open shop scheduling" در نشریات گروه "صنایع"

تکرار جستجوی کلیدواژه «open shop scheduling» در نشریات گروه «فنی و مهندسی»
جستجوی open shop scheduling در مقالات مجلات علمی
  • Morteza Enayati, Mahdi Yousefi Nejad Attari *, Fahime Lotfian Delouyi
    This paper addresses the open shop scheduling problem, considering parallel machines within each stage and integrating job transportation times between stages, independent of job specifics. In this scheduling problem, all jobs traverse each stage, and once a job commences on a machine, it must complete without machine breakdowns. To meet this challenge, a mixed-integer linear programming (MILP) model is introduced to minimize the makespan, which represents the maximum job completion time. Given the NP-hard nature of the open-shop scheduling problem, this study employs the whale metaheuristic algorithm to solve instances across various dimensions, spanning small, medium, and large scales. The algorithm parameters are systematically optimized using the Taguchi Method. Results from comparing the whale algorithm with the linear model implemented in GAMS highlight its exceptional efficiency in handling randomly generated small and medium-sized instances. Moreover, in a comparative analysis with other algorithms such as PSO and DE, the whale algorithm not only competes effectively but, in some instances, outperforms its counterparts. This observation underscores the algorithm's prowess in maintaining efficiency and high performance, particularly when addressing large-scale open-shop scheduling challenges. It excels in achieving a delicate balance between exploration and exploitation, thereby avoiding local optimal solutions.
    Keywords: Open Shop-Scheduling, Parallel Machines, Transportation Time, Mixed-Integer Linear Programming, Whale Optimization Algorithm
  • فریبرز مرادی، مهدی یزدانی *

    با توجه به رقابتی شدن بازار، تولیدکنندگان مجبور به افزایش کارایی و اثربخشی فعالیت‌های خود شده‌اند. در این راستا توجه به مسیله‌ی زمان‌بندی در محیط‌های تولیدی یک مبحث استراتژیک برای بقا در اینبازار رقابتی است. از مهم‌ترین مسایل در حوزه‌ی زمان‌بندی، مسیله‌ی زمان‌بندی کارگاه باز است که تا کنون در تحقیقات صورت گرفته در این خصوص، به منابع انسانی توجهی نشده است. در این پژوهش، یک مدل برنامه‌ریزی ریاضی عدد صحیح مختلط برای مسیله‌ی زمان‌بندی کارگاه باز دوهدفه با منابع دوگانه‌ی محدود انسان و ماشین ارایه شده است. ابعاد کوچک مسئله با استفاده از روش دقیق محدودیت اپسیلون حل شده است. در ادامه با توجه به پیچیدگی حل و Np-hard بودن این مسیله، از الگوریتم ژنتیک رتبه‌بندی نامغلوب و الگوریتم میرایی ارتعاش چندهدفه برای حل مسئله بهره گرفته‌ایم. تحلیل نتایج محاسباتی، بیان‌گر عملکرد و خروجی بهتر الگوریتم ژنتیک رتبه‌بندی نامغلوب است.

    کلید واژگان: زمان بندی کارگاه باز, منابع دوگانه محدود انسان و ماشین, مدل سازی ریاضی برنامه ریزی عدد صحیح مختلط, بهینه یابی چندهدفه, الگوریتم ژنتیک رتبه بندی نامغلوب, الگوریتم میرایی ارتعاش چندهدفه
    F. Moradi, M. Yazdani*

    Due to the competitiveness of the market, manufacturers have been forced to increase their activity effectiveness and efficiency. The shortening of the life cycle and the period of product supply to the market have forced manufacturers to increase the efficiency of their activities and production processes. As regards, the scheduling process and sequencing of efficient operations in manufacturing environments is one of the strategic issues for survival in the competitive market. Workshop environments such as job shop and flow shop are used in many industrial and service processes. One of the most challenging scheduling problems is the open shop scheduling one, but researches in this realm have not paid much attention to human resources. When there is no limit to the processing route of any job on shop machines, this model is referred to as an open shop. The open shop scheduling problem is a strategic issue. However, in most of available schedules in the literature, only workshop equipment, such as machines, is considered as limited resources, but in reality we are confronted with limited human and machine resources. In this study, a mixed-integer programming model is presented for the bi-objective open shop scheduling problem with limited human and machine dual resources. Small-sized problems are solved by using the exact epsilon-constraint method. According to the Np-hardness of this problem, two pareto-based meta-heuristics algorithms were used which are the Non-Dominated Sorting Genetic Algorithm (NSGAII) and Multi-objective Vibration Damping optimization (MOVDO). In order to analyze and compare the algorithms, we used four different indicators which include: The number of members of the first Pareto front, mean of ideal distance and diversity and spacing measures. Also, 30 problems in three scales (small, medium, large) have been generated. The computational results shows that the NSGAII is more functional and has better output in comparison to the other presented algorithm.

    Keywords: Open shop scheduling, dual resource constrained, Mixed integer linear programming model, multi objective optimization, non dominated sorting genetic algorithm, multi objective vibration damping optimization
  • Samaneh Noori-Darvish, Reza Tavakkoli-Moghaddam *

    We consider an open shop scheduling problem with setup and processing times separately such that not only the setup times are dependent on the machines, but also they are dependent on the sequence of jobs that should be processed on a machine. A novel bi-objective mathematical programming is designed in order to minimize the total tardiness and the makespan. Among several multi-objective decision making (MODM) methods, an interactive one, called the TH method is applied for solving small-sized instances optimally and obtaining Pareto-optimal solutions by the Lingo software. To achieve Pareto-optimal sets for medium to large-sized problems, an improved non-dominated sorting genetic algorithm II (NSGA-II) is presented that consists of a heuristic method for obtaining a good initial population. In addition, by using the design of experiments (DOE), the efficiency of the proposed improved NSGA-II is compared with the efficiency of a well-known multi-objective genetic algorithm, namely SPEAII. Finally, the performance of the improved NSGA-II is examined in a comparison with the performance of the traditional NSGA-II.

    Keywords: Open shop scheduling, Total tardiness, makespan, Sequence-dependent setup times, NSGA-II, SPEA-II
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال