به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "portfolio selection" در نشریات گروه "صنایع"

تکرار جستجوی کلیدواژه «portfolio selection» در نشریات گروه «فنی و مهندسی»
  • Roghaye Zarezade, Rouzbeh Ghousi *, Emran Mohammadi, Hossein Ghanbari
    Portfolio optimization is a widely studied problem in financial engineering literature. Its objective is to effectively distribute capital among different assets to maximize returns and minimize the risk of losing capital. Although portfolio optimization has been extensively investigated, there has been limited focus on optimizing portfolios consisting of cryptocurrencies, which are rapidly growing and emerging markets. The cryptocurrency market has demonstrated significant growth over the past two decades, offering potential profits but also presenting heightened risks compared to traditional financial markets. This situation creates challenges in constructing portfolios, necessitating the development of new and improved risk management models for cryptocurrency funds. This paper utilizes a new risk measurement approach called Conditional Drawdown at Risk (CDaR) in constructing portfolios within high-risk financial markets. Traditionally, portfolio optimization has been approached under certain conditions, considering risk and profit as decision criteria. However, recent approaches have addressed uncertainty in the decision-making process. To contribute to the advancement of scientific knowledge in this field, this paper proposes a new mathematical formulation of CDaR based on a chance-constrained programming (CCP) approach for portfolio optimization. To demonstrate the effectiveness of the proposed model, a practical empirical case study is conducted using real-world market data from 10 months focused on cryptocurrencies. The results obtained from this model can provide valuable guidance in making investment decisions in high-risk financial markets.
    Keywords: Portfolio Selection, Conditional Drawdown At Risk, Stochastic Programming, Chance Constrained Programming, Cryptocurrency
  • Amirmohammad Larni-Fooeik, Hossein Ghanbari, Seyed Jafar Sadjadi*, Emran Mohammadi

    In the ever-evolving realm of finance, investors have a myriad of strategies at their disposal to effectively and cleverly allocate their wealth in the expansive financial market. Among these strategies, portfolio optimization emerges as a prominent approach used by individuals seeking to mitigate the inherent risks that accompany investments. Portfolio optimization entails the selection of the optimal combination of securities and their proportions to achieve lower risk and higher return. To delve deeper into the decision-making process of investors and assess the impact of psychology on their choices, behavioral finance biases can be introduced into the portfolio optimization model. One such bias is regret, which refers to the feeling of remorse that can induce hesitation in making significant decisions and avoiding actions that may lead to unfavorable investment outcomes. It is not uncommon for investors to hold onto losing investments for extended periods, reluctant to acknowledge mistakes and accept losses due to this behavioral tendency. Interestingly, in their quest to sidestep regret, investors may inadvertently overlook potential opportunities. This research article aims to undertake an in-depth examination of 41 publications from the past two decades, providing a comprehensive review of the models and applications proposed for the regret approach in portfolio optimization. The study categorizes these methods into accurate and approximate models, scrutinizing their respective timeframes and exploring additional constraints that are considered. Utilizing this article will provide investors with insights into the latest research advancements in the realm of regret, familiarize them with influential authors in the field, and offer a glimpse into the future direction of this area of study.  The extensive review findings indicate a growth in the adoption of the regret approach in the past few years and its advancements in portfolio optimization.

    Keywords: Portfolio selection, Regret biases, Loss aversion, Behavioral finance, Market psychology, Bibliometrics
  • سامان هراتی زاده*، فاطمه رضایی
    هدف

    انتخاب سهام برای قرار گرفتن در یک سبد سهام و هم چنین تخصیص میزان مناسبی از سرمایه به هر یک از سهام درون سبد، چالش های جدی سرمایه گذاری در بازار سهام هستند. تاکنون در پژوهش های متعددی از روش های پیشرفته یادگیری ماشین برای انتخاب سهام درون سبد سهام استفاده شده است، استفاده از ظرفیت های یادگیری ماشین در فرآیند تخصیص کارآمد سرمایه میان سهام سبد کم تر موردتوجه قرار گرفته است و معمولا وزن یکسان به سهام سبد تخصیص داده می شود یا از روش های سنتی ارزیابی ریسک برای تقسیم سرمایه میان سهام سبد استفاده می شود. نقطه ضعف مشترک این روش ها این است که در همه آن ها از مکانیزم های ساده و انعطاف ناپذیر برای تخمین کارایی یک سبد سهام استفاده می شود. در این مقاله ما برای نخستین بار نشان می دهیم که با استفاده از یادگیری ماشین می توان مکانیزم موثرتری برای این تخمین کارایی ساخت که منجر به تخصیص پربازده تر سرمایه به سهام سبد می شود.

    روش شناسی پژوهش: 

    چارچوب پیشنهادی ما موسوم به  Per-Learner از دو مدل پیش بینی مبتنی بر یادگیری ماشین استفاده می کند. در گام 1 با استفاده از اطلاعات تاریخی سهام در یک مدل پیش بینی بازده سهم، سهام مناسب سبد انتخاب می شود و در گام 2 به کمک یک مدل پیش بینی مجزا سعی می شود با در نظر گرفتن هم زمان سود پیش بینی شده در مدل اول و ریسک مورد انتظار هر یک از سهم های سبد، بازده سبد در آینده پیش بینی شده و بر این اساس ترکیب وزن مناسب برای سهام سبد انتخاب و پیشنهاد گردد.

    یافته ها

    مقایسه بازده تجمعی سبدهای تنظیم شده با این مدل و سبدهای تنظیم شده با سایر روش های بهینه سازی سبد سهام، برتری مدل پیشنهادی را نشان می دهد.

    اصالت/ارزش افزوده علمی: 

    در این مقاله با بهره گیری از مدل های یادگیری ماشین، فرآیند انتخاب سهام سبد و تخصیص سرمایه مناسب میان سهام سبد به صورت خودکار انجام شده است و تاثیر آن در کارایی سبد به وضوح دیده می شود.

    کلید واژگان: انتخاب سبد سهام, بهینه سازی سبد سهام, یادگیری عمیق, یادگیری ماشین
    Saman Haratizadeh *, Fatemeh Rezaee
    Purpose

    Selection of the best stocks for the portfolio as well as allocating the optimal amount of capital per stock in the portfolio are serious challenges in investing in the stock market. The use of machine learning capacities in the process of optimal capital allocation among portfolio assets has received less attention and usually, the same weight is assigned to portfolio stocks or traditional risk assessment methods are used to divide capital between portfolio stocks. The common disadvantage of these methods is that they all use simple and inflexible mechanisms to estimate the performance of a set. The purpose of this paper is to show for the first time, that machine learning can be used to create a more effective mechanism for estimating performance, which leads to a more efficient allocation of capital to portfolio stocks.

    Methodology

    Our proposed framework, uses two predictive models based on machine learning. In the first step, stocks historical information is used in a return forecasting model, then based on the predicted returns, the appropriate stocks of the portfolio are selected. In the second step, a separate forecasting model predicts portfolio returns by taking into account both the forecasted returns in the first model and the expected risk of the stocks. At the end based on the predicted return of the numerous random portfolios, the appropriate weight for each asset is selected.

    Findings

    Comparing the returns of adjusted portfolios with this model and adjusted portfolios with other portfolio optimization methods shows the superiority of the proposed model.

    Originality/Value: 

    In this paper, by using machine learning models, the process of selecting the appropriate stock of the portfolio and allocating capital among the candidate stocks is done optimally.

    Keywords: Portfolio selection, portfolio optimization, Deep Learning, Machine Learning
  • Nasrin Ramezani, Farimah Mokhatab *
    In this study, first, a brief survey of various portfolio selection problems is presented to explore the related methodologies, hypotheses, and constraints that are considered in these problems. Among these methods, the grey relational analysis approach is employed to deal with poor information and uncertainties in portfolio selection problems. Return, risk, skewness, and kurtosis are used at the same time as selecting criteria in the portfolio construction. To evaluate the effectiveness of the proposed method, an empirical analysis has done. Therefore, fourteen stocks of various industries like metal, banks, financial institutions, car manufactures, transportation, and petroleum from the thirty largest active companies’ index in Tehran Stock Exchange have been randomly selected and all above mention moments have been calculated for each stocks. In this study, the portfolio is restructured dynamically each week based on the ranking of previous week. The result from the analysis indicates that the selected approach has better performance in comparison with the benchmarks in terms of return, standard deviation, and Sharpe ratio.
    Keywords: Portfolio selection, Grey Relational Analysis, Tehran Stock Exchange
  • Mohammad Ali Dehghan Dehnavi, Mohammad Mahdi Bahrololoum *, Moslem Peymany Foroushany, Sayyed Ali Raeiszadeh

    Portfolio selection is of great importance among financiers, who seek to invest in a financial market by selecting a portfolio to minimize the risk of investment and maximize their profit. Since there is a covariant among portfolios, there are situations in which all portfolios go high or down simultaneously, known as systemic risks. In this study, we proposed three improved meta-heuristic algorithms namely, genetic, dragonfly, and imperialist competitive algorithms to study the portfolio selection problem in the presence of systemic risks. Results reveal that our Imperialist Competitive Algorithm are superior to Genetic algorithm method. After that, we implement our method on the Iran Stock Exchange market and show that considering systemic risks leads to more robust portfolio selection. . Results reveal that our Imperialist Competitive Algorithm are superior to Genetic algorithm method. After that, we implement our method on the Iran Stock Exchange market and show that considering systemic risks leads to more robust portfolio selection.

    Keywords: Portfolio Selection, Systemic Risks, Genetic Algorithm, Imperialist competitive algorithm
  • مهدی بشیری*، پریسا حسنی

    در این مقاله، یک مدل ریاضی چندمرحله یی دوهدفه برای برنامه ریزیحمل ونقل ارایه می شود. در مرحله ی اول، یک مدل ریاضی برای برنامه ریزی حمل ونقل توسعه یافته است؛ پس از آن در مرحله ی دوم، مسئله ی انتخاب سبد بهینه ی وسایل نقلیه با توجه به سود حاصل از هریک از وسایل نقلیه حل می شود و در مرحله ی سوم، مدل دوهدفه ی تغییرات فنی در سبد وسایل نقلیه، ارایه می شود که تابع هدف اول آن، مجموع سود حاصل از وسایل نقلیه را بیشینه می کند و تابع هدف دوم آن میزان انحراف از تعداد وسایل نقلیه در سبد بهینه ی وسایل نقلیه را کمینه می کند. سپس از رویکرد برنامه ریزی آرمانی فازی و محدودیت اپسیلون برای حل مدل دوهدفه مرحله ی سوم استفاده می شود. در نهایت، تحلیل حساسیت های انجام شده و نتایج حاصل از حل یک مثال عددی با نتایج حل یک مدل برنامه ریزی حمل ونقل کلاسیک مقایسه شده است که کارایی روش پیشنهادی در صنعت حمل ونقل را نشان می دهد.

    کلید واژگان: برنامه ریزی حمل ونقل, تغییرات فنی در سبد وسایل نقلیه, انتخاب سبد بهینه ی وسایل نقلیه, برنامه ریزی آرمانی فازی
    M. Bashiri*, P. Hassani

    In this paper, a multi-phase bi-objective mathematical model is presented for a transportation planning. It is assumed that there is a planning horizon which includes some planning periods. In each phase, its related decisions are made. In the first phase, a transportation planning is done for each planning period considering products inconsistency features and other real conditions. In mentioned model steaming decision is made to solve products inconsistency before transporting the new product and the model considers transportation, steaming and other related costs to define optimal tour plan for each vehicle in each time period. The model is solved for each period separately according to the products demands and supplies in mentioned period. In the second phase, according to the total benefit and cost of each vehicle in each period, an optimal portfolio of vehicles is determined. The proposed model of the second phase considers average and risk of using various vehicles and tries to select proper ones. By the proposed portfolio, the transportation company will face to a strategic number of vehicles plan and according to observed periods may have more profit in the future. In the third phase, a bi-objective model is proposed for tactical decisions of purchasing or sale of each vehicle considering their age, their potential profits, their maintenance and other costs at the beginning of each time period. The first objective tries to maximize the total benefit of the transportation company while the second one minimizes the deviation of number of vehicles with their target value which was determined in the second phase by the portfolio selection model. By the third model, the transportation company will decide to purchase or sale each vehicle types to be used for the next time period. This decision is made considering the required demands or supplies, different costs and benefits. Finally, a fuzzy goal programming approach is used to solve the bi-objective model. Sensitivity analysis is done to consider models validity. Comparison of the proposed three phased approach with a classic transportation problem for a numerical example confirms efficacy of the proposed approach.

    Keywords: transportation planning, period planning, horizon planning, Portfolio selection, fuzzy goal programming
  • mostafa abdollahi moghadam, seyed babak ebrahimi *, Donya Rahmani
    In portfolio selection models, uncertainty plays an important role. The parameter’s uncertainty leads to getting away from optimal solution so it is needed to consider that in models. In this paper we presented a two-stage robust model that in first stage determines the desired percentage of investment in each industrial group by using return and risk measures from different industries. One reason of this work is that general conditions of various industries is different and according to the concepts of fundamental analysis should be chosen good groups before selection assets for investment. Another reason is that the identification of several good industries helps to diversify between several groups and reduce the risk of investment. In the second stage of the model, considering assets return, systematic risk, non-systematic risk and also first stage’s result, amount of investment in each asset is determined. In both stages of the model there are uncertain parameters. To deal with uncertainty, a robust approach has been used. Since the model is a multi-objective problem, goal programming method used to solve it. The model was tested on actual data. The results showed that the portfolio formed by this model can be well-established in the conditions of high uncertainty and obtain higher returns.
    Keywords: Portfolio selection, goal programming, robust Approach, parameter’s uncertainty
  • Ali Asghar Tofighian, Hamid Moezzi, Morteza Khakzar Barfuei, Mahmood Shafiee *

    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.

    Keywords: Portfolio selection, Risk analysis, Investment, Genetic algorithm, Particle swarm optimization, Project interdependency
  • محمدرضا علیرضایی، فاطمه رخشان*، بهاره بنای خویی
    یکی از مشکلات انتخاب پرتفولیو، انتخاب یک مجموعه سهام، دارایی و اوراق بهادار با اهداف متضاد و غیرقابل مقایسه مانند بازده و ریسک می باشد. مدل کارایی متقاطع تکنیک تحلیل پوششی داده ها (DEA)، یکی از ابزارهای مفید در سنجش کارایی است که امکان تعیین واحدهای کارا از صنایع مختلف را جهت تشکیل پرتفولیو فراهم می نماید. هرچند کارایی متقاطع رویکردی برای ارزیابی است، اما کاربرد آن در انتخاب سبد سهام توسعه داده شده است. در این تحقیق، میانگین نمرات کارایی متقاطع و تغییرات آن را بررسی کرده و دو آماره آن را در فرمول میانگین- واریانس گزینش سبد سهام گنجانیده ایم. این روش دو مزیت دارد: یکی گزینش سبد سهام هایی که ازلحاظ عملکردشان روی معیار ارزیابی چندگانه به خوبی توسعه یافته اند و دیگری کاهش پدیده ی به اصطلاح «دسته بندی هم زمان» ارزیابی کارایی متقاطع در انتخاب سبد سهام. این روش برای ارزیابی کارایی گزینش سبد سهام 20 شرکت معتبر بورس طی 9 دوره زمانی به کار گرفته شده و تغییرات کارایی و علل آن موردبررسی قرارگرفته است. همچنین نشان داده شده است که سبد سهام منتخب با این روش، بازدهی بالاتری بر مبنای تنظیم ریسک نسبت به دو شاخص بازار سهام طی یک دوره 9 ساله به همراه دارد.
    کلید واژگان: تحلیل پوششی داده ها, کارایی متقاطع, انتخاب سبد سهام, بورس
    Mohammad Reza Alirezaee, Fatemeh Rakhshan *, Bahareh Banaye Khoyi
    One of the problems in portfolio selection, is choosing a stock with conflicting and incomparable objectives such as return and risk. DEA cross efficiency is one of the most useful tools in assessing performance and prioritize a number of firms that makes it possible to determine efficient units in portfolio selection from different industries. Although cross efficiency is an approach for evaluating performance, it application is improved in portfolio selection. The method used in this research, calculates the (average) cross efficiency scores and considers its changes and then incorporates two statistics of cross efficiency into the mean-variance (MV) formulation of portfolio selection. This method has two advantages: One is selection of portfolios well-diversified in terms of their performance on multiple evaluation criteria, and the other is alleviation of the so-called ‘‘ganging together’’ phenomenon of DEA cross-efficiency evaluation in portfolio selection. This procedure is applied on stock portfolio selection in the Iranian stock market consist of 20 reputable companies and efficiency changes with causes over this period is examined. It is demonstrated in this paper that the selected portfolio yields higher risk-adjusted returns than two stock market index for a 9-year sample period.
    Keywords: Data envelopment analysis (DEA), Cross efficiency, Portfolio selection, Stock market
  • مرتضی ابراهیمی، زهرا خورشیدی
    سرمایه گذاری در بورس مستلزم داشتن اطلاعات کافی است. این اطلاعات شامل شناخت شرکت ها و سهام های مختلف و بررسی عملکرد در طی دوران فعالیت آن ها می باشد و برای دست یافتن به سرمایه گذاری سود آور که هدف هر سرمایه گذاری است، انتخاب بهترین سهام ها نقش مهمی دارد. اما تجزیه و تحلیل این مهم به علت وجود متغیر های فراوان و تاثیر گذار، پیچیدگی کار را دو چندان می کند. در این مقاله، سعی شده است برخی از این عوامل موثر در انتخاب بهینه سبد سهام و اولویت سرمایه گذران را با در نظر گرفتن ارتباط بین عوامل و رتبه بندی آن ها با استفاده از تکنیک های دیمتل و فرآیند تحلیل شبکه ای شناسایی و بررسی شود.
    عوامل در نظر گرفته شده در این مقاله، پس از مرور ادبیات مرتبط و مشاوره با کارشناسان خبره سازمان بورس، شامل معیار های ریسک، منفعت سرمایه ای، قابلیت نقد شوندگی، سود سهام، سهام شناور آزاد، اعتبار اطلاعات سهام، تناسب سهام، نسبت های مالی و روند بازار به عنوان مهمترین معیارها در ترجیح سرمایه گذاران در انتخاب سهام در نظر گرفته شده است. همچنین برای بررسی این معیارها، گزینه های سرمایه گذاری اوراق مشارکت بدون ریسک، سهام صنایع خودرو، صنایع فولاد و صنعت نفت در نظر گرفته شده است. در این مقاله از روش دیمتل جهت ارزیابی و رتبه بندی فاکتور ها با در نظر گرفتن ارتباط داخلی بین آن ها و ترسیم نمودار علت و معلول و از فرآیند تحلیل شبکه ای جهت رتبه بندی نهایی گزینه ها استفاده شده است. یافته های پژوهش نشان می دهد که فاکتورهای ریسک، روند بازار، اعتبار اطلاعات سهام، منفعت سرمایه ای و قابلیت نقدشوندگی در گروه فاکتورهای علت و فاکتورهای سود سهام، سهام شناور آزاد، نسبت های مالی و تناسب سهام در گروه فاکتورهای معلول قرار دارند. رتبه بندی فاکتورها از لحاظ اهمیت و میزان تاثیر در ترجیح سرمایه گذاران در انتخاب سبد سهام به ترتیب ریسک، قابلیت نقدشوندگی، سهام شناور، منفعت سرمایه ای، اعتبار اطلاعات سهام، روند بازار، سود سهام، تناسب سهام و نسبت های مالی می باشد و اولویت ها به ترتیب صنعت نفت، اوراق مشارکت بدون ریسک، صنعت فولاد و در نهایت صنعت خودرو رتبه بندی می باشند.
    کلید واژگان: فرآیند تحلیل شبکه ای, دیمتل, انتخاب سبد سهام, فاکتورهای تاثیر گذار در انتخاب سهام
    Morteza Ebrahimi, Zahra Khorshidi
    Investing in the stock requires sufficient knowledge. This information includes the identification of firms and different stocks and their performance during activities and to achieve the investment objective of profitable investment, choose the best stocks plays an important role. But the analysis of this matter because of the effective and great variables, make double the complexity of the task. In this article, we have tried some of these factors in selecting the optimal stock portfolio and investors priorities with regard to the relationship between agents and ranking them with identify and review using the DEMATEL techniques and analysis network process. Factors considered in this paper, after reviewing the relevant literature and consultation with experts and activists in this area include risk, return on equity, liquidity, dividends, free float stocks, security portfolio, the proportion of shares, financial ratios and market trends measures as the great criterions are in customer preferences and in the stock options have been considered. As well as to review these criteria, risk-free investment bonds options, automobile industry, steel industry and the oil industry stocks is considered. In this paper, using DEMATEL technique for evaluating and ranking factors with regard to internal communication between them and draw cause and effect diagram and analysis network process is used for the final ranking options.
    Keywords: Network analysis process, Dymtl, portfolio selection, factors influencing the choice of stock
  • Milad Jasemi *, Ali M Kimiagari

    Moving averages are one of the most popular and easy-to-use tools available to a technical analyst, and they also form the building blocks for many other technical indicators and overlays. Building a moving average (MA) model needs determining four factors of (1) approach of issuing signals, (2) technique of calculating MA, (3) length of MA, and (4) band. After a literature review of technical analysis (TA) from the perspective of MA and some discussions about MA as a TA, this paper is structured to highlight the effects that each of the first three factors has on performance of MA as a TA. The results that based on some experiments with real data support the fact that deciding about the first and second factors is not much critical, and more attention should be paid to other factors.

    Keywords: moving average, Technical Analysis, Trend forecasting, Investment decision, Portfolio Selection
  • دکتری یحیی زارع مهرجردی*، محسن شاه محمدی، لیلا امامی میبدی
    مهمترین مسئله مطرح برای سرمایه گذاران به خصوص در آغاز فعالیت اقتصادی، مسئله نحوه تخصیص سرمایه به یک یا چند گزینه مختلف سرمایه گذاری است تا ضمن داشتن حداکثر بازده، حداقل ریسک را متحمل شوند. این موضوع در ادبیات اقتصادی به عنوان مسئله انتخاب پرتفولیو مطرح است. این مقاله بر آن است که به ارائه روشی کارا به منظور پشتیبانی از فرد تصمیم گیرنده در انتخاب پرتفولیو مناسب جهت سرمایه گذاری بپردازد. در این مطالعه، انتخاب پرتفولیو مبنی بر مدل میانگین- واریانس- چولگی در نظر گرفته می شود که به منظور تطبیق هر چه بیشتر مدل با دنیای واقعی، بازده های سهام به صورت متغیرهای فازی فرض شده اند. در این مقاله به منظورحل مدل یک الگوریتم هوشمند ترکیبی جهت رسیدن به جوابی بهینه / نزدیک به بهینه ارائه شده است. در روش ارائه شده، از الگوریتم ژنتیک به منظور جستجوی پرتفولیو و از شبکه عصبی مصنوعی آموزش داده شده با شبیه سازی فازی جهت تخمین بازده و ریسک پرتفولیو استفاده می شود. در این الگوریتم به جهت استفاده از شبکه عصبی مصنوعی در تخمین مقادیر، زمان محاسبات به طور قابل ملاحظه ای در مقایسه با استفاده مستقیم از شبیه سازی فازی کاهش یافته است. همچنین در انتها با ارائه چند مثال عددی کارایی الگوریتم پیشنهادی در مقایسه با چند الگوریتم ترکیبی دیگر سنجیده شده است
    کلید واژگان: انتخاب پرتفولیو مدل فازی میانگین, واریانس, چولگی شبیه سازی فازی شبکه عصبی الگوریتم ژنتیک
    Ph.D. Yahia Zare Mehrjerdi *, Mohsen Shahmohammadi, Laila Emami Maibodi
    The most important problem for investors, at the beginning stages of their works, is the way of assigning their investment to one or more different investment alternatives in such a way that with the least possible risk the maximum return become obtainable. In the economic literature this is known as the problem of portfolio selection. This article tries to introduce an efficient way for supporting decision maker in the selection of appropriate portfolio for investment purposes. The portfolio is based upon the mean-variance-skewness with the return of portfio is considered to be fuzzy to match with the world reality more. This article proposes a hybrid intelligent algorithm for finding an optimial or new optimal solution of the problem. Here, authors use Genetic Algorithm to find the right portfolio with the help of neural network and fuzzy computer simulation knowledge. Due to the fact that trained neural network was used the computation time has reduced tremendously in comparison with the straight use of the fuzzy simulation. Authors have used two example problems to demonstrate the efficiency of the proposed algorithm in comparison with other hybrid algorithms from the literature.
    Keywords: Portfolio Selection, Fuzzy Mean, Variance, Skewness, Fuzzy Simulation, Neural Network, Genetic Algorithm
  • Alireza Alinezhad, Majid Zohrehbandian, Meghdad Kian, Mostafa Ekhtiari, Nima Esfandiari
    Recently, the economic crisis has resulted in instability in stock exchange market and this has caused high volatilities in stock value of exchanged firms. Under these conditions, considering uncertainty for a favorite investment is more serious than before. Multi-objective Portfolio selection (Return, Liquidity, Risk and Initial cost of Investment objectives) using MINMAX fuzzy goal programming for a Fuzzy Allocated Portfolio is considered in this research and all the main sectors of investment are assumed under uncertainty. A numerical example on stock exchange is presented to demonstrate the validity and strengths of the proposed approach.
    Keywords: Portfolio selection, Fuzzy Allocated Portfolio (FAP), Fuzzy goal programming, MINMAX Approach
  • Nabil Mansour, Abdelwaheb Rebai Belaid Aouni *

    In the portfolio selection problem, the manager considers several objectives simultaneously such as the rate of return, the liquidity and the risk of portfolios. These objectives are conflicting and incommensurable. Moreover, the objectives can be imprecise. Generally, the portfolio manager seeks the best combination of the stocks that meets his investment objectives. The imprecise Goal Programming model will be utilized to build the most satisfactory portfolio. The concept of satisfaction functions will be utilized to integrate explicitly the preferences of the portfolio’s manager. The developed model has been applied to portfolio selection within the Tunisian stock exchange market.

    Keywords: Portfolio selection, Imprecise goal programming, Satisfaction function, Manager’s preferences
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال