به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "stochastic optimization" در نشریات گروه "صنایع"

تکرار جستجوی کلیدواژه «stochastic optimization» در نشریات گروه «فنی و مهندسی»
جستجوی stochastic optimization در مقالات مجلات علمی
  • ملیحه فلاح تفتی، محبوبه هنرور*، رضا توکلی مقدم، احمد صادقیه
    این مطالعه به توسعه ی یک مدل مکان یابی-مسیریابی هاب دو هدفه ی تصادفی برای مساله ی طراحی شبکه ی ریلی تندرو می پردازد. به دلیل استفاده از سیستم های ریلی تندرو در هر دوی زیرشبکه های سطح هاب (شبکه ی میان گره های هاب) و سطح غیرهاب (اسپک یا شبکه ای که گره های غیرهاب را به یکدیگر و به گره های هاب متصل می کند)، تصمیم گیری درخصوص مکان یابی گره های هاب، گره های غیرهاب، یال های هاب و یال های غیرهاب، تخصیص گره های غیرهاب به گره های هاب و تعیین خطوط حرکت هاب، خطوط حرکت غیرهاب، درصد تقاضاهای خدمت دهی شده و نحوه ی مسیریابی جریان از طریق خطوط شبکه به طور همزمان صورت می گیرد. عدم قطعیت برای تقاضاها درنظر گرفته شده که با مجموعه ی محدودی از سناریوها نشان داده می شوند. مساله با روش مدل سازی تصادفی دومرحله ای فرموله شده است. اهداف مساله بیشینه سازی امیدریاضی سود خالص کل و کمینه سازی امید ریاضی زمان خدمت کل می باشد. عملکرد مدل پیشنهادی از طریق آزمایشات محاسباتی با استفاده از مجموعه داده ی شناخته شده ی پست استرالیا ارزیابی گردید. نتایج محاسباتی اهمیت درنظر گرفتن مدل تصادفی و اهداف متضاد سود و زمان را برای مساله تایید نمودند. برخی بینش های مدیریتی نیز از طریق تجزیه وتحلیل شبکه های حاصل تحت تنظیمات مختلف پارامترها و بررسی چگونگی تاثیر این تنظیمات بر ویژگی های جواب های حاصل و تعاملات بین جنبه های مختلف مساله ی تصمیم گیری پیچیده ی مورد مطالعه، ارائه گردید
    کلید واژگان: مکان یابی هاب, طراحی شبکه های ریلی تندرو, شبکه ی هاب و غیرهاب, بهینه سازی دوهدفه و تصادفی
    Malyhe Fallah-Tafti, Mahbobeh Honarvar *, Reza Tavakkoli-Moghaddam, Ahmad Sadegheih
    This study focuses on the development of a stochastic bi-objective hub location-routing model for a railway rapid transit network design problem. Due to the use of railway rapid transit systems in the hub-level sub-network (i.e., the network among the hub nodes) and the spoke-level sub-network (i.e., the network that connect spoke nodes to each other and to hub nodes), the decisions to make concern the location of hub nodes, spoke nodes, hub edges and spoke edges, and the determination of hub and spoke lines, the percentage of satisfied demands, and the way of routing the demands, simultaneously. Uncertainty is assumed for demands represented by a finite set of scenarios. The problem is formulated through a two-stage stochastic modeling framework. The aim is to maximize the total expected profit and to minimize the total expected service time. The performance of the model is evaluated through computational tests using the well-known AP dataset. The computational results confirm the importance of considering the stochastic model and the conflicting profit and time objectives for the given problem. Some managerial insights are also provided through the analysis of the resulting networks under various parameter settings and the investigation of the effect of these settings on the characteristics of the obtained solutions and the interactions among the different aspects of the studied complex decision problem
    Keywords: Hub Location, Railway Rapid Transit Network Design, Hub, Spoke Network, Bi-Objective, Stochastic Optimization
  • Mehdi Farhadkhani, Majid Rafiee *, Hossein Nikpayam
    Stochastic and robust optimizations have been considered as two different views of stochastic problems. While robust optimization takes optimization in the worst case, stochastic optimization regards no conservative view and merely focuses on expected value. However, a unilateral view of stochastic problems does not apply to most real problems. In this article, a hybrid robust and stochastic approach is proposed for optimization problems under uncertainty. Our major contribution is presenting different conservative levels in solving an optimization problem using a Hybrid Robust and Stochastic Optimization approach. To this end, we cluster uncertain parameters into different clusters using Latin Hypercube Sampling and k-Means clustering tools; having established various numbers of clusters of uncertain parameters, different clustering criteria and a Multi-Criteria Decision Making (MCDM) tool is employed to determine the optimal number of clusters of uncertain parameters. Then, a hybrid energy optimization model under uncertainty is applied to coordinate the scheduling of natural gas-fired electricity generation units and gas supply units (gas refinery) under natural gas and electricity demand uncertainty, with known probability distribution and uncertain parameters having different levels of conservatism. The results indicate that while no special trend is evident in the execution time as the number of clusters increases, the optimal value is decreased.
    Keywords: Coordinated Scheduling Of Electricity & Natural Gas Supply Systems, Hybrid Robust, Stochastic Optimization, K-Means Clustering, Latin Hypercube Sampling, Scenario Generation
  • S. Farid Mousavi, Zahra Mahdavi, Kaveh Khalili-Damghani*, Arezoo Gazori-Nishabori

    As global trade flourishes, terminals endeavor to get higher income while adapting to an expanded intricacy concerning terminal administration tasks. Perhaps the most common issues such terminals encounter is the Berth Allocation Problem (BAP), which involves allotting vessels to a bunch of berths and time allotments while at the same time limiting goals, for example, total stay time or total assignment cost. Complex formats of actual terminals present spatial constraints that restrict the mooring and departure of vessels. In spite of the fact that significant research has been carried out with regard to the BAP, these real-world limitations have not been considered in an overall manner. In this paper, a stochastic Multi-Period Berth Allocation-Scheduling Problem in Different Terminals with Irregular Layouts (SBAP) considering multi-Period modes, generalized precedence relations are developed. To solve the (SBAP), a solution approach based on Stochastic Chance Constraint Programming (SCCP) and a solution approach based on Two-Stage Stochastic Linear Programming with Recourse (TSSLPR) is proposed. A mathematical model is solved to show the applicability of the suggested model and solution approach.

    Keywords: Berth Allocation Problem, Stochastic Programming, Multi-Period, Stochastic Optimization
  • Shubham Singh *, Ritu Nigam, Debjani Chakraborty
    Stochastic programming is often used to solve optimization problems where parameters are uncertain. In this article, we have proposed a mathematical model for a three-stage transportation problem, where the parameters, namely transport costs, demand, unload capacity and external purchasing costs are uncertain. In order to remove the uncertainty, we have proposed a new transformation technique to reformulate the uncertain model deterministically with the help of Essen inequality. The obtained equivalent deterministic model is nonlinear. Furthermore, we have provided a theorem to ensure that the deterministic model gives a feasible solution. Finally, a numerical example, following uniform random variables, is presented to illustrate the model and methodology.
    Keywords: stochastic optimization, Chance constraints programming, Essen inequality
  • N. Shirazi, M. Seyyed Esfahani, H. Soleimani
    This paper considers a three-stage fixed charge transportation problem regarding stochastic demand and price. The objective of the problem is to maximize the profit for supplying demands. Three kinds of costs are presented here: variable costs that are related to amount of transportation cost between a source and a destination. Fixed charge exists whenever there is a transfer from a source to a destination, and finally, shortage cost that incurs when the manufacturer does not have enough products for supplying customer’s demand. The model is formulated as a mixed integer programming problem and is solved using a multicriteria scenario based solution approach to find the optimal solution. Mean, standard deviation, and coefficient of variation are compared as the acceptable criteria to decide about the best solution.
    Keywords: Fixed charge transportation problem, stochastic optimization, multi, criteria scenario, based solution, mean, standard deviation, coefficient of variation
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال