به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « Failure mode » در نشریات گروه « صنایع »

تکرار جستجوی کلیدواژه «Failure mode» در نشریات گروه «فنی و مهندسی»
  • Mohammad Alijanzadeh, Seyed Shayannia *, Mohammad Movahedi
    A system's approach depends on the low malfunction of the equipment and processes of that system, and maintenance plays an essential role in achieving this goal. In addition, over time, the equipment quality decreases, and a quality transfer from controlled to uncontrolled mode may occur, characterized by an increase in the rate of return of the product and the tendency to fail. One of the methods that researchers have widely used in analyzing the risk of net operations is the analysis of the effect and failure modes to identify critical failure modes and focus planning and net resources on them. In analyzing the effect and failure modes, one of the essential steps is prioritizing the equipment to determine the critical equipment, as well as determining the fundamental failure modes and prioritizing them to plan the net operation purposefully. This paper aims to dynamically rank equipment in intuitionistic fuzzy environments with interval values ​​to identify and prioritize critical equipment and present a mathematical model for combining optimization of preventive maintenance intervals and control parameters. For this purpose, a model is presented that calculates the dynamic weights of each piece of equipment according to the conditions of each piece of equipment in the indicators of failure probability, failure consequence, and lack of fault detection power. Therefore, dynamic ranking is provided for the equipment. In this research, for dynamic prioritization of equipment, the method of analysis of the ratio of intuitionistic fuzzy gradual weighting with quantitative values ​​(IVIF-SWARA) was presented. Then, a mathematical model was presented for the identified critical equipment. The proposed model can determine the optimal value of each of the four decision variables, i.e., sample size, inspection rotation time, control limit coefficient, and preventive repair intervals of each of the critical equipment of the Northern Oil Pipeline and Telecommunication Company and the total expected cost of integration per unit. Minimize time. The results show that the proposed model is much more flexible in calculating equipment's weight and dynamic rating and provides more logical rating results.
    Keywords: Supply Chain Process, Effect analysis, failure mode, Risk-based maintenance, Process quality, Mathematical Optimization}
  • Batool Rafiee, Davood Shishehbori *, Hassan Hosseini Nasab
    Industrial plants are subjected to very dangerous events. Therefore, it is very essential to carry out an efficient risk and safety analysis. In classical applications, risk analysis treats event probabilities as certain data, while there is much penurious knowledge and uncertainty in generic failure data that will lead to biased and inconsistent alternative estimates. Then, in order to achieve a better fitting with systems condition, uncertainty needs to be considered. One of the most usual analytical methods that have been widely applied in the field of risk analysis is the technic of failure mode and effects analysis (FMEA). The usage of this method is in identifying and abolishing the multiple failure modes in various phases of system, from the product design to production of the industries system operation. To solve the shortcomings in the traditional FMEA method, we propose an innovative approach consisted of Dempster Shafer evidence theory (DST) and FMEA to provide a more efficient way for failure mode identification and prioritization. The proposed methodology in this study can well capture imprecise opinions and can prioritize failure modes considering uncertainties. City Gate Station (CGS) of Yazd Province was used to prove the practical application and validity of the proposed risk analysis methodology. Results showed that the proposed method is effective and practical for real engineering purposes.
    Keywords: Risk Analysis, Failure mode, effect analysis (FMEA), Uncertainty, Dempster Shafer evidence theory (DST), City Gate Station (CGS)}
  • Batool Rafiee, Davood Shishehbori *, Hassan Hosseini Nasab
    Industrial plants are subjected to very dangerous events. Therefore, it is very essential to carry out an efficient risk and safety analysis. In classical applications, risk analysis treats event probabilities as certain data, while there is much penurious knowledge and uncertainty in generic failure data that will lead to biased and inconsistent alternative estimates. Then, in order to achieve a better fitting with systems condition, uncertainty needs to be considered. One of the most usual analytical methods that have been widely applied in the field of risk analysis is the technic of failure mode and effects analysis (FMEA). The usage of this method is in identifying and abolishing the multiple failure modes in various phases of system, from the product design to production of the industries system operation. To solve the shortcomings in the traditional FMEA method, we propose an innovative approach consisted of Dempster Shafer evidence theory (DST) and FMEA to provide a more efficient way for failure mode identification and prioritization. The proposed methodology in this study can well capture imprecise opinions and can prioritize failure modes considering uncertainties. City Gate Station (CGS) of Yazd Province was used to prove the practical application and validity of the proposed risk analysis methodology. Results showed that the proposed method is effective and practical for real engineering purposes.
    Keywords: Risk Analysis, Failure mode, effect analysis (FMEA), Uncertainty, Dempster Shafer evidence theory (DST), City Gate Station (CGS)}
  • Surya Perdana *, Dana Saroso
    The industry under study is a company in the field of making Speaker, Megaphone and Amplifier. In this study, the Thoshiba IS 350 GS 350 Ton machine has observed. Constraints such as when producing machine Speaker Parts produce high reject products up to 7% of the total monthly production. When operating the machine often experiences downtime due to damage to the engine. Damage causes high employee overtime due to having to pursue production targets and the costs to be incurred by the company can reach Rp. 3 billion per month. Evaluation is done by calculating Overall Equipment Effectiveness (OEE) and comparing with OEE before repairs. Furthermore, discussed the factors that influence the effectiveness of the Injection molding machine contained in the six big losses and other problems where the method of analysis with fishbone diagrams. After that, the discussion was conducted using the analysis of Failure Mode and Effect Analysis (FMEA) to identify and analyze potential failures and their consequences. From the results of the observation, the main cause of damage to the Thoshiba IS 350 GS 350 Ton machine is the low Performance Rate with an average value of 63.5% in April 2018, this is caused by the value of Reduced Speed Losses that have the biggest contribution in six big losses with a loss of 86.9 hours which results in the Thoshiba IS 350 GS 350 Ton Machine not working optimally.
    Keywords: Overall Equipment Effectiveness, Failure Mode, Effect Analysis, performance}
  • Fazel Rabbi *

    FMEA (Failure Mode and Effect Analysis) refers to a proactive quality tool that enables the identification and prevention of the potential failure modes of a product or process. However, in executing traditional FMEA, the difficulties such as vague information, relative importance ratings, decisions on same ratings, and opinion difference among experts arise which reduce the validity of the results. This paper presents a fuzzy logic based FMEA depending on fuzzy IF-THEN rules over traditional FMEA to make it precise and give proper maintenance decision. Here, the Risk Priority Number (RPN) is calculated and compared to the Fuzzy Risk Priority Number (FRPN) to give maintenance decision. Furthermore, the FMEA of Reach Stacker Crane (RST) is presented to demonstrate the proposed Fuzzy FMEA.

    Keywords: Failure mode, effect analysis (FMEA), Risk priority number, Fuzzy theory, Fuzzy FMEA, IF-THEN rules}
  • Guntur Pratama Putra *, Humiras Hardi Purba
    The current electricity demand is increasing, and now the government has involved third parties in the implementation of electricity so that investors compete in building infrastructure in order to apply electricity. Thermal power is one source that has a fast break event point compared to other resources that more interested investors even with all forms of pollution caused. A form of heat power using a vapor pressure is fired into the turbine so that it will cause a rotating force that will turn the generator into an electric generator. thermal power has the ability to generate electricity large, but if there is a failure in operation, then the burden will quickly lose power sources that can cripple production activities.FMEA is one of the most widely used tools in the industry to analyze the root cause of the system so that the system is protected from small and large damage and can disrupt the stability of the industrial operating system. The reliability of the machine must always be maintained so that with this method it is expected to help the power service providers to maintain the availability of its services.With the implementation of FMEA, we get an overview of the steps to be taken for the future so that the reliability of a steam generator boiler system can be improved
    Keywords: PowerPlant, Boiler, Thermal Power, Failure mode, effect analysis}
  • مهدی کرباسیان*، بیژن خیام باشی، ام البنین یوسفی، پوریا ناصری
    روند فعلی موجود در صنایع مختلف این نکته را اذعان می دارد که برقراری سیستمی با قابلیت ارجاع سریع میزان خرابی های محصول یا برآورد قابلیت اطمینان آن، از ضروریات هر صنعت است. یکی از محصولات صنایع نظامی گلوله های ضدهوایی است که در برابر تهدیدات دشمن مورد استفاده قرار می گیرد. در این تحقیق برای محاسبه ی قابلیت اطمینان و ارتقاء عملکرد سامانه ی سلاح مهمات، ابتدا با استفاده از نمودار جریان کارکردی محصول F F B D و نمودار کارکردی F B D تمام بخش های محصول، و در ادامه با استفاده از F B D سطوح بالای مربوط به تحلیل درخت خطا F T A شناسایی می شود. پس از آن نمودار قابلیت اطمینان R B D تهیه و با استفاده از تکنیک بیزین فازی قابلیت اطمینان تخمین زده می شود. سپس با استفاده از تجزیه و تحلیل حالات بالقوه خرابی و آثار آن F M E A به صورت فازی خطاهای طراحی را شناسایی کرده و آن را بهبود می بخشند.
    کلید واژگان: قابلیت اطمینان, جریان کارکردی محصول F F B D, تحلیل درخت خطا F T A, شبکه ی بیزین فازی, تجزیه و تحلیل حالات بالقوه خرابی و آثار آن (F M E A)}
    M. KARBASIAN*, B. KHAYAMBASHI, O. YOUSEFI, P. NASERI
    The process of development and expansion of advanced industries with abundant industrial production in the current era reveals the necessity of the implementation of preventive methods in dealing with possible failures. This necessity becomes more evident in industries whose real value of produce encompasses a large volume of potential assets (e.g. the munitions industry). Reliability is one of the most important qualitative characteristics of components, products, and large, complex systems that play a crucial role in the performance of such equipment.
    Modern engineered products, from each component to large systems, must be designed and produced in such a way as to have the necessary reliability. In every industry, especially the aerospace industry, it would be dangerous and harmful from different economic, human, and political aspects when a system fails or becomes dysfunctional. The current trends in various industries indicate that establishing a system capable of quickly referring the failure rate of a product, or estimating its reliability, is a requirement for each industry. The reliability of a system is the probability that the system will perform a given task under certain conditions and at certain time intervals.
    According to this definition, it is obvious that reliability indicates the continuation of functionality without failure (e.g. in accomplishing a mission). Therefore, reliability is defined as the probability that a system or component remain functional without failure. Reliability is of crucial importance in the arms industry. One of the products of the arms industry is the anti-aircraft missile, which is used against enemy threats. If such a product is functional or becomes functional late, there will be irreparable damage, which itself adds to the importance of the product.
    In this study, first FFBD and FBD are used in order to calculate reliability and improve the functionality of munitions and weapon systems. Then, higher levels of FTA are identified using a FBD. After that, RBD is prepared, and reliability is estimated using the Fuzzy-Bayesian technique. Finally, design errors are identified and improved using a Fuzzy FMEA.
    Keywords: Reliability, function ow block diagram (FBD), fault tree analysis (FTA), fuzzy bayesian networks, failure mode, e ect analysis}
  • مهدی جلالی، سیدعلی موسوی نجار کلا، حسن محمدپور، علیرضا کوهپایی، علیرضا مشکوری *
    روش تجزیه و تحلیل حالات شکست و اثرات آن یکی از شناخته شده ترین تکنیکهای ایمنی سیستم است که بصورت سیستماتیک به شناسایی شکستهای سیستمها، زیرسیستمها و اجزای آن در فرایندها می پردازد. هدف این مطالعه ارزیابی ریسکهای بالقوه موجود در واحد الکترونیک یکی از نیروگاه های سیکل ترکیبی، با استفاده از تکنیک FMEA می باشد. جهت انجام این مطالعه، ابتدا تیمی از کارشناسان و سرپرستان باتجربه تشکیل شد و خطرات بالقوه واحد الکترونیک شناسایی گردید. در مرحله بعد پارامترهای احتمال وقوع، شدت اثر و قابلیت شناسایی خطر تعیین و نمره اولویت خطر پذیری برای کلیه خطرات شناسایی شده، محاسبه شد. در نهایت، موارد شناسایی شده با توجه به آیین نامه های مربوطه و با استفاده از نرم افزار Excel مورد تجزیه و تحلیل قرار گرفت. نتایج حاصل از این مطالعه نشان داد تعداد خطرات بالقوه شناسایی شده در این واحد، 37 مورد بوده که از این تعداد، 68% موارد در سطح بالا (غیرقابل قبول) و 32% در سطح متوسط و پایین می باشند. بالاترین نمره ریسک از بین این خطرات، به برق گرفتگی در هنگام تعویض زغالهای ژنراتور و همچنین در اثر برقدارشدن اتفاقی سیمهای رهاشده در محوطه واحد الکترونیک با RPN معادل 300 تعلق گرفت. باتوجه به بالا بودن نمره ریسک برق گرفتگی در این واحد، انجام اقدامات کنترلی فنی مهندسی و مدیریتی به منظور کاهش حوادث ناشی از آن امری ضروری و بایسته بوده و می تواند به منظور دستیابی به نتایج مطلوب و کاهش ریسک به سطوح قابل قبول حائز اهمیت باشد.
    کلید واژگان: ارزیابی ریسک, نیروگاه, تکنیک FMEA, ایمنی}
    Mahdi Jalali, Seyyed, Ali Moussavi, Najarkola, Hassan Mohammadpour, Alireza Koohpaei, Alireza Mashkoori*
    Failure Mode and Effects Analysis (FMEA) is a method to systematically identify the failures of systems, subsystems and their components in the different operational processes. The study aimed to identify the failures modes and assess their potential effects on other systems, subsystems and other system components in the electronic unit of combined cycle power plants by FMEA. Based on our design in the first step, a team of experts was formed to identify the potential failures as well as determining their Occurrences (O), severities (S), and capabilities of failure detection (Detectability) (D) leading to their interaction as Risk Priority Number (RPN) in electronics unit. Then, administrative or engineering control measures or Personal Protective Equipment (PPE) were proposed to diminish the high risk failures to lower ones. Obtained data were analyzed with Excel software based on related procedures and guidelines finally. Results showed numbers of potential risks identified in this unit were 37 cases of which 68% were unacceptable level and 32% of those were at acceptable levels. Among these risks, the highest risk of electrocution when replacing coal generators and electrocution caused accidentally energized wires went to an abandoned area of unit with RPN equals to 300. Considering electrocution to the high risk score units, Engineering and management control measures to reduce the risk of accidents caused by Electrocution should has been considered in order to achieve optimum results and reducing the risk to acceptable levels.
    Keywords: Risk assessment, Power plant, Failure Mode, Effects Analysis, Safety}
  • Mahdi Shaghaghi, Kamran Rezaie
    Failure mode and effects analysis (FMEA) is a method based on teamwork to identify potential failures and problems in a system, design, process and service in order to remove them. The important part of this method is determining the risk priorities of failure modes using the risk priority number (RPN). However, this traditional RPN method has several shortcomings. Therefore, in this paper we propose a FMEAwhich uses generalized mixture operators to determine and aggregate the risk priorities of failure modes. In a numerical example, a FMEA of the LGS gas type circuit breaker product in Zanjan Switch Industries in Iran is presented to further illustrate the proposed method. The results show that the suggested approach is simple and provides more accurate risk assessments than the traditional RPN.
    Keywords: Failure mode, effects analysis (FMEA), Generalized mixture operators, Fuzzy set, Risk priority number}
  • M. Karbasian, M. Rostami Mehr, M. Agharajabi
    In recent years, Many manufacturing industries for promoting their efficiency have tended to use the automatic manufacturing systems. Expanding automatic systems and to increase their complexity are representing the necessity of studying a proper functional quality and using reliable equipment in such systems more than ever. In this direction, the technique of fault tree analysis (FTA), along with using other techniques such as failure mode and effect analysis (FMEA) reveals the incorrect performance states (modes) in system in order to know these modes exactly may prevent their occurance and increase their function quality. In this study, the approaches may increase the reliability of performance in an industrial robot are studied by FTA technique as a case study to show improvement in performance of equipments on automatic systems to reduce their destruction (fault) during the work, and finally access to an automatic manufacturing systems with high reliability.
    Keywords: Failure mode, effect analyses, fault tree nalysis, Automatic manufacturing}
نمایش نتایج بیشتر...
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال