به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "metaheuristic algorithms" در نشریات گروه "عمران"

تکرار جستجوی کلیدواژه «metaheuristic algorithms» در نشریات گروه «فنی و مهندسی»
  • P. Hosseini*, A. Kaveh, A. Naghian, A. Abedi

    This study aimed to develop and optimize artificial stone mix designs incorporating microsilica using artificial neural networks (ANNs) and metaheuristic optimization algorithms. Initially, 10 base mix designs were prepared and tested based on previous experience and literature. The test results were used to train an ANN model. The trained ANN was then optimized using SA-EVPS and EVPS algorithms to maximize 28-day compressive strength, with aggregate gradation as the optimization variable. The optimized mixes were produced and tested experimentally, revealing some discrepancies with the ANN predictions. The ANN was retrained using the original and new experimental data, and the optimization process was repeated iteratively until an acceptable agreement was achieved between predicted and measured strengths. This approach demonstrates the potential of combining ANNs and metaheuristic algorithms to efficiently optimize artificial stone mix designs, reducing the need for extensive physical testing.

    Keywords: Artificial Stone Microsilica, Mix Design Optimization, Artificial Neural Networks, Metaheuristic Algorithms, Enhanced Vibrating Particles System (EVPS), Self-Adaptive Enhanced Vibrating Particles System (SA-EVPS)
  • علی فاخری کوزه کنان، ناصر خاجی*

    شناسایی و بررسی انواع آسیب ها در سازه یکی از موضوعات چالش برانگیز در حوزه مهندسی به شمار می رود. در این مقاله، ردیابی آسیب در سازه های دوبعدی، به عنوان یک مسئله ارزیابی غیرمخرب، با استفاده از روش المان محدود توسعه یافته و کلاسیک به همراه روش بهینه یابی الگوریتم ژنتیک و گرگ خاکستری بررسی می شود. روش المان محدود توسعه یافته برای مدلسازی سازه ی حاوی ترک و حفره و روش بهینه یابی ژنتیک و گرگ خاکستری برای تعیین موقعیت آسیب استفاده شده است. روش المان محدود توسعه یافته ابزاری قوی برای تحلیل سازه ی حاوی آسیب بدون مشبندی مجدد است و بنابراین برای یک فرایند تکراری در تحلیل سازه مناسب است. همچنین در این مسائل به دلیل گسترده بودن پارامترها استفاده از روش های ریاضی بسیار پرهزینه است. به همین دلیل روش های فراابتکاری گسترش یافته اند، که روش های بهینه یابی گرگ خاکستری و ژنتیک از جمله این روش های رایج غیرگرادیانی هستند که برای حل مسئله ی معکوس مناسب است. این مسئله طوری تنظیم شده که الگوریتم بهینه یاب، مختصات آسیب موجود را با کمینه کردن یک تابع خطا براساس مقادیر اندازه گیری شده به وسیله ی حسگرهایی که روی سازه نصب شده اند، پیدا می کند. در نهایت، سه نمونه عددی نیز برای بررسی قابلیت و دقت روش پیشنهادی حل شده است.

    کلید واژگان: روش المان محدود توسعه یافته, مساله معکوس, الگوریتم فراابتکاری, شناسایی آسیب, روشهای بهینهیابی
    A. Fakheri Kouzekanan, N. Khaji*

    Today, one of the important issues in the industry is the failure of parts due to the presence of holes or cracks. Among the numerical calculation tools, the classical and extended finite element method is known as the most useful numerical tools in solving engineering science problems. Identifying and investigating the types of cracks, flaws and cavities in structures is one of the most challenging issues in the field of engineering. In this article, the crack detection of two-dimensional (2D) structures using the extended finite element method (XFEM) along with genetic algorithm(GA) and grey wolf optimization method (GWO) to detect the existing crack and flaws by minimizing an error function which is also called as objective function that the evaluation of it, is based on difference between sensor measurements and suggested structure responses in each try of the algorithm.  Damage detecting in 2D domains, as a non-destructive evaluation problem, is investigated using the extended finite element method along with the optimization method of genetic algorithm and grey wolf. The extended finite element method has been used to model the structure containing cracks and holes in the abaqus program, and genetic optimization and grey wolf method have been used to determine the location of the damage in which the codes were in matlab program. The extended finite element method is a powerful tool for the analysis of structures containing cracks without remeshing and is therefore suitable for an iterative process in structural analysis. Also, in these problems, due to the wide range of parameters, it is not logical and rational to use mathematical methods. For this reason, meta heuristic methods have been developed, and grey wolf optimization methods and genetic algorithm are among these common non-gradient methods that are suitable for solving the inverse problem. This problem is set so that the optimizer algorithm finds the existing crack coordinates or holes coordinates by minimizing an objective function based on the values measured by the sensors installed on the structure. Among the limitations of the classical finite element method in the investigation of various problems in the field of fault and crack detection, we can point out the dependence of the crack or cavity on the finite element mesh, re-meshing and in other special cases the use of singular elements, which are completely removed by using The extended finite element. In this research, in order to identify the damage, the genetic optimization algorithm and the gray wolf have been used. These algorithms are designed in such a way to determine the characteristics of the damage by minimizing an error function. The defined error function is defined as the difference between the response obtained from the algorithm analysis and the response recorded in the main structure modeled in ABAQUS software, at the location of the sensors. Finally, three reference numerical examples have been solved to evaluate the capability and accuracy of the proposed method, and the result of the results shows a reduction in the cost of solving and an increase in the accuracy of the results.

    Keywords: Extended finite element Method, Flaw detection, Metaheuristic algorithms, Inverse problem
  • V. Goodarzimehr*, F. Salajegheh

    The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.

    Keywords: Optimal design of steel frames, tall buildings, metaheuristic algorithms, artificial intelligence, special relativity search algorithm
  • H. Tamjidi Saraskanroud*, M. Babaei
    Structural topology optimization provides an insight into efficient designing as it seeks optimal distribution of material to minimize the total cost and weight of the structures. This paper presents an optimum design of steel moment frames and connections of structures subjected to serviceability and strength constraints in accordance with AISC-Load and Resistance Factor Design (LRFD). In connection topology optimizations, different beam and column sections and connections and also to optimize two steel moment frames a genetic algorithm was used and their performance was compared. Initially, two common steel moment frames were studied, only for the purpose of minimizing the weight of the structure and the members of structure are considered as design variables. Since the cost of a steel moment frame is not solely related to the weight of the structure, in order to obtain a realistic plan, in the second part of this study, for the other two frames the cost of the connections is also added to the variables. The results indicate that the steel frame optimization by applying real genetic algorithm could be optimal for structural designing. The findings highlighted the prominent performance and lower costs of the steel moment frames when different connections are used.
    Keywords: Steel frame optimization, metaheuristic algorithms, connection topology optimization, genetic algorithm
  • A. Kaveh*, A. Zaerreza
    This paper presents the chaotic variants of the particle swarm optimization-statistical regeneration mechanism (PSO-SRM). The nine chaotic maps named Chebyshev, Circle, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent are used to increase the performance of the PSO-SRM. These maps are utilized instead of the random number, which defines the solution generation method. The robustness and performance of these methods are tested in the three steel frame design problems, including the 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame. The optimization results reveal that the applied chaotic maps improve the performance of the PSO-SRM.
    Keywords: Chaotic maps, structural optimization, Particle swarm optimization-statistical regeneration mechanism, steel structures, metaheuristic algorithms
  • A. Kaveh*, A. Zaerreza

    In this paper, three recently improved metaheuristic algorithms are utilized for the optimum design of the frame structures using the force method. These algorithms include enhanced colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The structures considered in this study have a lower degree of statical indeterminacy (DSI) than their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most suitable analysis method for these structures. The robustness and performance of these methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame.

    Keywords: Enhanced colliding bodies optimization, improved shuffled Jaya algorithm, vibrating particles system - statistical regeneration mechanism algorithm, force method, structural optimization, metaheuristic algorithms
  • A. Kaveh*, M. R. Seddighian, N. Farsi

    Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impressively. However, the iterative procedure and its relative computational memory and time have remained a challenge, up to now. In this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a supervised machine learning technique, has been employed to determine the collapse load factors of two-dimensional frames in an absolutely fast manner. The numerical examples indicate that the proposed method's performance and accuracy are satisfactory.

    Keywords: Optimization, Metaheuristic Algorithms, Plastic Limit Analysis, Artificial Neural Networks, Machine Learning, Finite Element Method, Nonlinear Structural Analysis
  • M. Ilchi Ghazaan*, A.H. Salmani Oshnari, A. M. Salmani Oshnari

    Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Algorithm (SCA) is a stochastic optimization method that employs sine and cosine based mathematical models to update a randomly generated initial population. In this paper, we developed a new hybrid approach called hybrid CBO with SCA (HCBOSCA) to obtain reliable structural design optimization of discrete and continuous variable structures, where a memory was defined to intensify the convergence speed of the algorithm. Finally, three structural problems were studied and compared to some state of the art optimization methods. The experimental results confirmed the competence of the proposed algorithm.

    Keywords: Colliding Bodies Optimization, Sine Cosine Algorithm, Structural Design, Discrete, Continuous Optimization, Metaheuristic Algorithms
  • M. Paknahad, P. Hosseini*, A. Kaveh

    Optimization methods are essential in today's world. Several types of optimization methods exist, and deterministic methods cannot solve some problems, so approximate optimization methods are used. The use of approximate optimization methods is therefore widespread. One of the metaheuristic algorithms for optimization, the EVPS algorithm has been successfully applied to engineering problems, particularly structural engineering problems. As this algorithm requires experimental parameters, this research presents a method for determining these parameters for each problem and a self-adaptive algorithm called the SA-EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS algorithm using the 72-bar spatial truss structure and three classical benchmarked functions

    Keywords: enhanced vibrating particle system, self-adaptive algorithm, SA-EVPS algorithm, metaheuristic algorithms, continuous optimization problems
  • Milad Baghalzadeh Shishehgarkhaneh, Sina Fardmoradinia *, Afram Keivani, Mahdi Azizi
    Dam construction projects are considered complicated, large, and heavy projects throughout the world, requiring a high number of workers, stakeholders, equipment, cost, and time. Hence, their resource management and trade-off are one of the most important tasks for project managers and schedulers. Concerning the Building Information Modeling (BIM) method and metaheuristic algorithm, this study proposes a framework for resource trade-offs in dam construction project scheduling. Atomic Orbital Search (AOS) is employed as a newly developed metaheuristic algorithm based on quantum mechanics principles. First, a 3D model of the dam construction project is modeled using the BIM process and project management software. Regarding the minimization of time, cost, risk, and maximum quality, an optimization problem is formed, and the AOS's capacity to solve this issue is assessed, and its outcomes are compared with different four metaheuristic algorithms. Meanwhile, all optimization processes were carried out. To identify the statistical measures considering a predetermined stopping condition, 30 separate optimization runs are carried out. The outcomes show that the AOS algorithm can deliver competitive and exceptional results when handling trade-offs between various resource alternatives in dam construction. Consequently, project managers can use the AOS optimization algorithm in their large and intricate construction projects in dealing with resource trade-off problems.
    Keywords: Metaheuristic Algorithms, Building Information Modeling (BIM), Goocham Storage Dam, Atomic Orbital Search (AOS) Algorithm, Resource Trade-Off
  • مهرداد احسانی، فریدون مقدس نژاد*، پوریا حاجی کریمی

    یکی از خرابی های مهم عملکردی در روسازی های بتنی، خرابی پلکانی شدن است. پیش بینی مقدار این خرابی می تواند در طراحی بهینه روسازی بتنی و نیز استقرار سامانه مدیریت تعمیر و نگهداری روسازی ها مورد استفاده قرار گیرد. در این مطالعه از شبکه های عصبی مصنوعی برای پیش بینی مقدار این خرابی بر اساس داده های عملکرد طولانی مدت روسازی (LTPP) استفاده شده است. ابتدا با استفاده از 32 متغیر انتخابی ورودی شامل داده های ترافیکی، آب و هوایی و سازه ای، معماری شبکه عصبی مصنوعی با روش آزمون و خطا تعیین شده و سپس معماری مشخص شده به درستی آموزش داده شده است. علاوه بر متغیرهای مورد استفاده در مطالعات گذشته، متغیرهای ورودی جدیدی نظیر ضریب پواسون و مدول الاستیسیته دال بتنی که تاکنون بررسی نشده اند نیز در بین این 32 متغیر مد نظر قرار گرفته است. سپس با بکارگیری روش جدید NSGA2-MLP، 19 متغیر مهم شناسایی شده و یک مدل شبکه عصبی جدید با این تعداد متغیر ساخته شده است. مقدار ضریب همبستگی، میانگین مربعات خطا و میانگین خطای مطلق برای مدل ساخته شده با 32 متغیر و 19 متغیر به ترتیب برابر 97/0، 45/0، 43/0، 95/0، 54/0 و 6/0 می باشد. در انتها با استفاده از روش جنگل تصادفی میزان اهمیت 19 متغیر بر اساس درصد تعیین گردید. چهار متغیری که بیشترین اهمیت را دارند بر اساس سهم درصد اهمیت متغیر از 100 به ترتیب عبارتند از تعداد تجمعی روزهای با بارش بیشتر از 7/12 میلیمتر با 24%، مدول الاستیسته دال بتنی با 14%، عمر روسازی با 12% و ضخامت اساس با 10% اهمیت.

    کلید واژگان: پلکانی شدن, روسازی بتنی غیرمسلح درزدار, شبکه عصبی مصنوعی, انتخاب ویژگی, الگوریتم های فراابتکاری
    Mehrdad Ehsani, Fereidoon Moghadas Nejad *, Pouria Hajikarimi

    One of the essential functional failures in concrete pavements is faulting. Predicting this failure can be used in various fields such as pavement design and pavement management systems. In this study, powerful tool of artificial neural networks has been used to predict this failure. Initially, using 32 input variables including traffic, weather and structural data, the artificial neural network architecture was determined by trial and error and then the specified architecture was properly trained. Among these 32 variables, in addition to the variables used in previous studies, new input variables that have not been studied so far, such as Poisson's ratio and elastic modulus of concrete slabs, have been considered. Then, with a new method, 19 important variables were identified and a new neural network model with 19 variables was constructed. The values of correlation coefficient, mean square error and mean absolute error for the model with 32 variables and 19 variables are equal to 0.97, 0.45, 0.43, 0.95, 0.54 and 0.6. Finally, using the random forest method, the importance of 19 variables was determined, of which the four most important variables are the annual cumulative number of days with precipitation greater than 12.7 mm (24%), elastic modulus (14%), Pavement life (12%) and base thickness (10%). elastic modulus is one of the most important input variables if this variable has not been studied in previous studies.

    Keywords: Faulting, jointed plain concrete pavement (JPCP), Artificial Neural Networks, feature selection, Metaheuristic algorithms
  • رویا امیری، جواد مجروحی سردرود*، وحید مومنایی کرمانی

    پروژه های تحقیقاتی نشان می دهد که تمایل به رویکردهای هوشمند برای اخذ تصمیم گیری ها در مراحل مختلف صنعت ساخت رو به افزایش است. برنامه ریزی جانمایی در سایت یکی از فرآیندهای مهم تصمیم گیری در مراحل اولیه پروژه های ساخت است که طی آن بایستی مکان تجهیزات و امکانات در داخل محدوده فضای سایت تعیین شود. تاورکرین یکی از تجهیزات حیاتی و گران قیمت در سایت های ساخت به شمار می رود. جانمایی مناسب تاورکرین تاثیر قابل توجهی برکیفیت، بهره وری، ایمنی، هزینه و مدت زمان پروژه دارد. در انتخاب مکان تاورکرین معیارهای متعددی شامل بزرگترین شعاع بالابری و ظرفیت تاورکرین، جنس خاک در سایت، ظرفیت باربری خاک و محل عرضه مصالح تاثیر دارند. لذا با توجه به تاثیر عوامل زیاد، جانمایی تاورکرین، یک مساله بهینه -سازی پیچیده و سخت است که حل آن با بالارفتن تعداد پارامترها و متغیرها از طریق الگوریتم های ریاضی دقیق میسر نیست. بنابراین، تعریف مسئله به صورت یک مساله بهینه سازی و ادغام آن با مدلسازی ریاضی برای رسیدن به جواب بهینه ضروری است. حل اینگونه مسائل معمولا از طریق الگوریتم های فراابتکاری که از دسته الگوریتم های تقریبی هستند انجام می شود. این مقاله مروری جامع بر تحقیقات انجام شده در زمینه مساله جانمایی تاورکرین در سایت های ساخت با استفاده از مدلسازی ریاضی و الگوریتم های فراابتکاری ارائه می دهد. بر اساس یافته های این مقاله، شکاف های تحقیقاتی در این زمینه شناسایی شده است. لذا پیشنهاداتی برای تحقیقات آتی در جهت رفع نواقص ارائه شده است که می تواند موضوع مقالات تحقیقاتی متعددی باشد.

    کلید واژگان: الگوریتم های فراابتکاری, بهینه سازی, سایت, جانمایی تاورکرین
    Roya Amiri, Javad Majrouhi Sardroud *, Vahid Momenaei Kermani

    Research projects show that the desire for intelligent approaches to decision-making at various stages of the construction industry is increasing. Site layout planning is one of the important decision-making processes in the early stages of construction projects, where the location of facilities must be determined within the site. Tower crane is considered as one of the vital and expensive facilities in construction sites. Proper locating of tower crane has a significant impact on the quality, productivity, safety, cost and time of the project. In choosing the location of the tower crane, there are several criteria, including the largest lifting radius and capacity of the tower crane, the type of soil on site, the soil-bearing capacity and the material supply points. Therefore, due to the influence of many factors, tower crane planning is a complex NP-hard optimization problem, which cannot be solved through exact mathematical algorithms as the number of parameters and variables increases. Therefore, it is necessary to define the problem as an optimization problem and integrate it with mathematical modeling to reach the optimal solution. Solving such problems is usually done through metaheuristic algorithms, which belong to the category of approximate algorithms. This study provides a comprehensive review on tower crane planning problem on construction sites using mathematical modeling and metaheuristic algorithms. Based on the findings of this study, research gaps are identified in this field. Therefore, suggestions for future works have been presented in order to solve the shortcomings, which can be the subject of various research articles.

    Keywords: Metaheuristic Algorithms, Optimization, Site, Tower Crane Planning
  • P. Hosseini, A. Kaveh*, N. Hatami, S. R. Hoseini Vaez

    Metaheuristic algorithms are preferred by the many researchers to reach the reliability based design optimization (RBDO) of truss structures. The cross-sectional area of the elements of a truss is considered as design variables for the size optimization under frequency constraints. The design of dome truss structures are optimized based on reliability by a popular metaheuristic optimization technique named Enhanced Vibrating Particle System (EVPS). Finite element analyses of structures and optimization process are coded in MATLAB. Large-scale dome truss of 600-bar, 1180-bar and 1410-bar are investigated in this paper and are compared with the previous studies. Also, a comparison is made between the reliability indexes of Deterministic Design Optimization (DDO) for large dome trusses and Reliability-Based Design Optimization (RBDO).

    Keywords: enhanced vibrating particle system, reliability index, dome truss structures, metaheuristic algorithms, reliability based design optimization, large scale trusses
  • A. Kaveh*, J. Jafari Vafa

    The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal analysis. In this paper, the simulated annealing algorithm has been employed to form suboptimal cycle basis. The simulated annealing algorithm works by using local search generating neighbor solution, and also escapes local optima by accepting worse solutions. The results show that this algorithm can be used to generate suboptimal and subminimal cycle bases. Compared to the existing heuristic algorithms, it provides better results. One of the advantages of this algorithm is its simplicity and its ease for implementation.

    Keywords: suboptimal cycle basis, simulated annealing algorithm, graph theory, metaheuristic algorithms, sparse matrices
  • بهزاد اسپوتین، سینا فرد مرادی نیا*

    در سال های اخیر پیچیدگی اجرای پروژه ها، فضای رقابتی کسب وکار و محدودیت منابع سازمان ها، لزوم توجه به مدیریت پروژه را در دست یابی به اهداف پروژه ها بیشتر مورد توجه قرار داده است .از این رو در مراحل اجرای پروژه ها، کارفرمایان به دنبال افزایش کیفیت، کاهش مدت زمان و هزینه های اجرا و ریسک هستند که از اهداف اصلی آنها به شمار می روند. در این تحقیق،  بهینه سازی بین اجزاء هرم بقاء شامل زمان، هزینه، کیفیت و ریسک در پروژه های عمرانی و به صورت موردی بر روی سد مخزنی قوچم انجام گرفته است. به این منظور از شش الگوریتم بهینه سازی فراابتکاری استفاده شده است که سه الگوریتم کلاسیک (ژنتیک، جستجوی ممنوعه و تبرید شبیه سازی شده) و سه الگوریتم های جدید (پروانه، چرخه بکرزایی و شاهین هریس) می باشند. در چهار حالت به بهینه سازی هر یک از اجزا هرم بقاء به طور جداگانه پرداخته شده است و در نهایت هر چهار حالت بطور همزمان بررسی شده است. کدنویسی های مربوط به توابع هدف و الگوریتم های بهینه سازی در نرم افزار متلب انجام گرفته است. نتایج نشانگر عملکرد مناسب الگوریتم ژنتیک است. همچنین در بهینه سازی شاخص کیفیت فقط الگوریتم ژنتیک بهترین جواب بهینه را داده است و در بهینه سازی مرکب با در نظرگرفتن همزمان تمامی شاخص ها، الگوریتم های ژنتیک و شاهین هریس بهترین جواب را ارایه داده اند.

    کلید واژگان: بهینه سازی, هرم بقاء, الگوریتم های فراابتکاری, دانش مدیریت پروژه, سد مخزنی قوچم
    Behzad Espoutin, Sina Fard Moradinia *

    In recent years, the complexity of project implementation, competitive business environment, and limited resources of organizations have shown the need to pay attention to project management in achieving project goals. Therefore, in the implementation process, employers seek to increase quality, reduce execution time, costs, and risk, which are their main goals. In this research, optimization between the components of the survival pyramid including time, cost, quality, and risk in construction projects are done on a case-by-case basis on the Qucham reservoir dam. For this purpose, six Metahioristic optimization algorithms are used, which are three classical algorithms (genetics, Tabu search, and simulated annealing) and three new algorithms (butterfly, cyclical parthenogenesis, and harris hawk). In four cases, each component of the survival pyramid is optimized separately, and finally, all four cases are examined simultaneously. Coding related to objective functions and optimization algorithms has been done in MATLAB software. The results indicate the proper performance of the genetic algorithm. Also, in optimizing the quality index, only the genetic algorithm has given the best optimal answer, and in the combined optimization, considering all the indicators simultaneously, the genetic algorithms and the Harris hawk have given the best solution.

    Keywords: optimization, Survival pyramid, Metaheuristic algorithms, Project Management Knowledge, Qucham reservoir dam
  • A. Kaveh, P. Hosseini*, N. Hatami, S. R. Hoseini Vaez

    In recent years many researchers prefer to use metaheuristic algorithms to reach the optimum design of structures. In this study, an Enhanced Vibrating Particle System (EVPS) is applied to get the minimum weight of large-scale dome trusses under frequency constraints. Vibration frequencies are important parameters, which can be used to control the responses of a structure that is subjected to dynamic excitation. The truss structures were analyzed by finite element method and optimization processes were implemented by the computer program coded in MATLAB. The effectiveness and efficiency of the Enhanced Vibrating Particle System (EVPS) is investigated in three large-scale dome trusses 600-, 1180-, and 1410-bar to obtain the weight optimization with frequency constraints.

    Keywords: optimization, dome truss structures, frequency constraints, metaheuristic algorithms, Enhanced Vibrating Particle System
  • T. Bakhshpoori*

    Metaheuristics are considered the first choice in addressing structural optimization problems. One of the complicated structural optimization problems is the highly nonlinear dynamic truss shape and size optimization with multiple natural frequency constraints. On the other hand, natural frequency constraints are useful to control the responses of a dynamically exciting structure. In this regard, this study uses for the first time the water evaporation optimization (WEO) algorithm to address this problem. Four benchmark trusses are considered for experimental investigation of the WEO. Obtained results indicate the comparative performance of WEO to the best-known algorithms in this problem, high performance in comparison to those of different optimization techniques, and high performance in comparison to all algorithms in terms of robustness. The simulation results clearly show a good balance between the global and local exploration abilities of WEO and its potential robust efficiency for other complicated constrained engineering optimization problems.

    Keywords: truss optimization, frequency constraints, metaheuristic algorithms, Water Evaporation Optimization
  • رضا اسدیان، کیارش ناصراسدی، مهدی اقبالی*

    کاربرد بهینه مصالح در ساخت سازه ها از اهداف اصلی در هر طراحی محسوب می گردد. از آنجا که ساخت سازه های ساختمانی برای سازندگان آنها دارای هزینه های زیادی است، بنابراین، سازه ها و ساختمان هایی که از نظر اقتصادی توجیه پذیر و مناسب بوده و الزامات آیین نامه ها را تامین می نمایند، مورد استقبال بیشتری قرار می گیرند. از طرف دیگر، حفظ عملکرد سازه ها در زلزله ها نقش مهمی در تامین ایمنی و کاهش خسارات ناشی از زلزله دارد. بهینه سازی قاب ها باعث کاهش مقاطع، سختی و مقاومت اجزا می گردد و در نتیجه عملکرد این قاب ها در برابر زلزله مورد تردید محققان قرار گرفته است. در این پژوهش، سطح عملکرد قاب های خمشی بهینه سازی شده با الگوریتم های فرا کاوشی مورد ارزیابی قرار گرفته است. برای این موضوع، عملکرد لرزه ای قاب های خمشی فولادی پنج طبقه با مشخصات متفاوت هندسی با استفاده از الگوریتم های ژنتیک، ازدحام ذرات، کلونی مورچگان، و سیستم ذرات باردار بهینه سازی شده و مورد ارزیابی لرزه ای قرار گرفته است. نتایج مطالعات نشان می دهد که قاب بهینه شده بر اساس الگوریتم سیستم ذرات باردار دارای وزن کمتر و مقاطع سبک تری بوده و پاسخ های رفتار لرزه ای قاب ها سریع تر بدست آمده است. از نظر سطوح عملکردی نیز، مجموع تعداد مفاصل آستانه فروریزش در الگوریتم ازدحام ذرات از سایر روش ها بیشتر بوده است. بنابراین این الگوریتم نیز به عنوان یک پیشنهادی مناسب برای طراحی بهینه قاب های مشابه می تواند پیشنهاد گردد.

    کلید واژگان: ارزیابی لرزه ای, سطوح عملکردی, قاب خمشی فولادی, بهینه سازی, الگوریتم های فراکاوشی
    Reza Asadian, Kiarash Naser Asadi, Mahdi Eghbali *

    Optimal use of materials in the construction of structures is one of the main goals in any design. Because the construction of building structures is costly for their builders, therefore, structures and buildings that are economically justifiable and appropriate and meet the requirements of the criteria are more welcome. On the other hand, maintaining the performance of structures in earthquakes plays an important role in ensuring safety and reducing earthquake damage. Optimization of frames reduces sections, stiffness, and strength of components, and as a result, the performance of these frames against earthquakes has been questioned by researchers. In this research, the performance level of optimized steel moment frames with metaheuristic algorithms has been evaluated. For this purpose, the seismic performance of five-story steel moment frames with different geometric characteristics has been optimized and seismically evaluated using Particle Swarm Optimization (PSO), Charged System Search (CSS)Ant Colony Algorithm (ACO) and Genetic Algorithm (GA). The results of studies show that the optimized frame based on the Charged System Search algorithm has lower weight and lighter sections, and the seismic behavior responses of the frames are obtained faster. In terms of performance levels, the total number of collapse plastic joints in the Particle Swarm Optimization (PSO) was higher than other methods. Therefore, this algorithm can also be proposed as a suitable proposal for the optimal design of similar frames.

    Keywords: Seismic evaluation, performance-based, steel moment frame, optimization, metaheuristic algorithms
  • مهرداد احسانی، حامد ناصری، روح الله سعیدی نژاد، محمدعلی اعتباری قصبه، فریدون مقدس نژاد*

    در این مطالعه، چهار دسته بتن شامل خاکستر بادی، خاکستر بادی و سرباره، بتن معمولی و بتن حاوی سرباره مورد بررسی قرار گرفته است و با استفاده از دو روش یادگیری ماشین معرفی شده (الگوریتم ژنتیک و رقابت لیگ فوتبال) و چهار روش رگرسیونی، مقاومت فشاری بتن های مذکور پیش بینی شده است. با استفاده از شاخص های آماری دقت هر مدل برآورد شده و با دقت ترین مدل برای هر دسته بتن معرفی شده است و از آن برای حل مساله بهینه سازی استفاده شد. روش یادگیری ماشین مبتنی بر رقابت لیگ فوتبال برای هر چهار دسته بتن بجز بتن معمولی از دقت بالاتری برخوردار بود و برای بتن معمولی روش یادگیری ماشین مبتنی بر الگوریتم ژنتیک به عنوان بهترین مدل معرفی گردید. هدف از مساله بهینه سازی کمینه کردن هزینه هر دسته بتن با در نظر گرفتن مقاومت بتن 40 مگاپاسکالی بوده است. بتن حاوی خاکستر بادی، خاکستربادی و سرباره و همچنین بتن حاوی سرباره نسبت به بتن معمولی به ترتیب 2/35، 9/29 و 1/23 درصد نسبت به بتن معمولی هزینه ساخت را کاهش می دهند. تولید سیمان یکی از عوامل آلودگی محیط زیست می باشد. بتن حاوی خاکستر بادی، خاکستربادی و سرباره، بتن حاوی سرباره و بتن معمولی به ترتیب 25/217، 47/150، 102 و 64/414 کیلوگرم بر مترمکعب سیمان در طرح مخلوط بهینه مورد استفاده قرار گرفتند. که بتن شامل سرباره، کمترین مقدار مصرف سیمان برای بتنی با مقاومت 40 مگاپاسکال را در بین 4 دسته بتن دارد و حدود 4/75 درصد نسبت به بتن معمولی مصرف سیمان را کاهش داده است.

    کلید واژگان: پیش بینی مقاومت فشاری بتن, بهینه سازی طرح مخلوط, یادگیری ماشین, رگرسیون, الگوریتم های فراابتکاری
    Mehrdad Ehsani, Hamed Naseri, Ruhollah Saeedi Nezhad, Mohammadali Etebari Ghasbeh, Fereidoon Moghadas Nejad *

    In this study, four concrete types, including ordinary Portland cement concrete, fly ash concrete, slag concrete, and slag-fly ash concrete, are taken into account in order to estimate their compressive strength by two novel machine learning methods (genetic algorithm and soccer league competition algorithm), and four types of regressions (linear, 2nd order polynomial, exponential, and logarithmic). Subsequently, the precision of prediction models are compared based on performance indicators, and the most accurate models are applied in the optimization problem modeling. Drawing on results, the most precise model to estimate the compressive strength of ordinary Portland cement concrete is the genetic algorithm, and the soccer league competition is the most accurate model to estimate the strength of other concrete types. Afterward, a model is developed so as to design mixture proportions of 40MPa concretes. Fly ash concrete, slag-fly ash concrete, and slag concrete reduce the unit cost by 35.2%, 29.9%, and 23.1%, respectively, compared with ordinary Portland cement concrete. Fly ash concrete, slag-fly ash concrete, slag concrete, and ordinary Portland cement concrete require 217.25 kg, 150.47 kg, 102 kg, and 414.64 kg cement to be manufactured. Furthermore, the slag concrete can reduce the amount of cement in the mixture proportion by 75.4%, and it is the most eco-friendly concrete.

    Keywords: Compressive strength prediction, Mixture design optimization, Machine learning, Regression, Metaheuristic algorithms
  • S. R. Hoseini Vaez, P. Hosseini, M. A. Fathali, A. Asaad Samani, A. Kaveh*

    Nowadays, the optimal design of structures based on reliability has been converted to an active topic in structural engineering. The Reliability-Based Design Optimization (RBDO) methods provide the structural design with lower cost and more safety, simultaneously. In this study, the optimal design based on reliability of dome truss structures with probability constraint of the frequency limitation is discussed. To solve the RBDO problem, nested double-loop method is considered; one of the loops performs the optimization process and the other one assesses the reliability of the structure. The optimization process is implemented using ECBO and EVPS algorithms and the reliability index is calculated using the Monte Carlo simulation method. Finally, the size and shape reliability-based optimization of 52-bar and 120-bar dome trusses has been investigated.

    Keywords: Monte Carlo simulation method, reliability index, truss structures, metaheuristic algorithms
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال