جستجوی مقالات مرتبط با کلیدواژه "particle filter" در نشریات گروه "عمران"
تکرار جستجوی کلیدواژه «particle filter» در نشریات گروه «فنی و مهندسی»-
در این مطالعه به کمک روش فیلترذره ای و مدل عددی بدون شبکه جریان آب زیرزمینی، مقادیر دقیق سطح آب در مرزهای هد ثابت آبخوان بیرجند تعیین شدند. فیلتر ذره ای یکی از روش های همگون سازی داده ها بوده که در جهت کالیبراسیون آنلاین و بهبود عملکرد مدل های عددی دینامیکی کمک شایانی می کند. همچنین مدل عددی بدون شبکه، از جمله مدل هایی است دامنه محاسباتی را شبکه بندی نمی کند و معادلات را تنها بر روی گره ها اعمال می کند. در این آبخوان نه جبهه ورودی و یک جبهه خروجی هد ثابت وجود دارد که این جبهه ها در مدل بدون شبکه، تعداد 105 گره مرزی را شامل می شوند. پس از تعیین حدود بالا و پایین سطح آب برای هر یک از این گره ها در الگوریتم فیلتر ذره ای مقادیر دقیق هد در نقاط مرزی تعیین شد و سپس به کمک مدل شبیه ساز، سطح آب زیرزمینی بدست آمده با مقادیر مشاهداتی مقایسه شدند. نزدیکی نتایج به مقادیر مشاهداتی، قدرت این روش در جهت تخمین مقادیر دقیق مرزی را نشان داد، به طوریکه، با اتصال این روش کالیبراسیون به مدل بدون شبکه، خطای جذر میانگین مربعات از 757/0 به 386/0 متر رسید. این مقدار کاهش در مقدار خطا، ضرورت اضافه شدن این روش، به تمامی مدل های آب زیرزمینی را نشان می دهد. همچنین نتایج نشان دادند که با افزایش تعداد ذرات، در روش فیلتر ذره ای، دقت نتایج بالاتر می رود، به طوریکه خطای جذر میانگین مربعات با در نظرگرفتن 500، 700 و 1000 ذره به ترتیب 484/0، 401/0 و 386/0 متر می باشند.
کلید واژگان: آبخوان بیرجند, خطای جذر میانگین مربعات, شرایط مرزی هد ثابت, فیلتر ذره ای, مدل بدون شبکه جریان آب زیرزمینیHaving the exact values of boundary conditions is one of the effective way to accurate groundwater models. In the present study, the exact value of constant head boundaries in Birjand aquifer is specified with the usage of particle filter linked to meshless groundwater model. Particle filter known as one of the data assimilation methods applies to dynamic systems in order to improve their performance. Meshless model, one of the numerical models that do not mesh the problem domain, enforces the governed equation to nodes. Birjand aquifer with almost 269 km2 area, has 190 extraction and 10 observation wells. There are also nine inflow and one outflow regions with constant head boundary conditions, which include 105 boundary nodes. After determination of the lower and upper bounds of groundwater head for each node, the exact values of this parameter is computed. Finally, the simulated groundwater head compared with observation data. The closeness of the achieved results to the observation data showed the performance of the engaged method, as the results indicated a significant decrease in RMSE occurs just with the usage of particle filter linked to meshless model. RMSE value reduced to 0.386 m as its previous value was 0.757 m. The results also showed that the model was more accurate when the number of particles in particle filter increased. The RMSE value for 500, 700 and 1000 particles were 0.484, 0.401 and 0.386m respectively.
Keywords: Birjand aquifer, RMSE, Constant Head Boundary Condition, Particle Filter, Meshless Groundwater Flow Model -
The present study employs a mathematical method, i.e. Particle Filter (PF), to accurately estimate the parameters of three standard aquifers. The method is linked to a new developed numerical method, i.e. meshless local Petrov-Galerkin based on the moving kriging method (PF-MLPG-MK), to determine the aquifer parameters such as hydraulic conductivity coefficient, transmissivity coefficient, and storage coefficient or specific yield appropriately. For this purpose, a set of particles scattered in the state space. Each particle has two features: location and weight. Particles with greater weight values have the closer location to the estimation. Weight values which are assigned to each particle is computed based on the maximum likelihood function. This function is calculated in MLPG-MK simulation model. Overall, by linking particle filter model to the accurate simulation model, an efficient estimation method for aquifer parameters is obtained. This model applied to three standard aquifers. In the first standard aquifer, the estimated parameters of hydraulic conductivity and specific yield were 30.21 and 0.143, respectively. However, the exact values are 30 and 0.15. Also, in the second standard aquifer, the predicted transmissivity and storage coefficients were 99.7038 and 0.001057 whereas their true values are 100 and 0.001. In the third aquifer, the exact value of six parameters were achieved. The sensitivity analysis of the number of particles was carried out. Results revealed that with increasing the particles more accuracy will be achieved. 60, 80 and 100 particles were considered in the model. Results for 100 particles showed more accuracy.Keywords: Aquifer Hydrodynamic Parameters, Groundwater modelling, Particle Filter, Meshless Local Petrov-Galerkin
-
Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel structure subjected to the base excitation has been implemented using these methods by considering the modeling and material model uncertainties. Implementing the 2D and 3D modelings, using the “parallelogram” and “scissors” methods for the modeling of panel zones and that of the wall panels by two methods (using beam-column elements and equivalent diagonal strut elements), are the assumptions of this study. Using the parallelogram method has resulted in fewer errors in the 2D modeling while implementing different methods for simulation of wall panels has had no specific achievements. As illustrated in the results, more significant uncertainties were expected in systems with highly nonlinear behavior, since the equivalent linearization was used to estimate the system states in the EKF method. However, this method is less time-consuming and gives more accurate results in comparison with the PF method, in which a lrge number of samples are required for the system identification.
Keywords: System identification, Extended Kalman Filter, Particle Filter, FE model updating, modeling uncertainty
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.