به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "hybrid filtering" در نشریات گروه "فناوری اطلاعات"

تکرار جستجوی کلیدواژه «hybrid filtering» در نشریات گروه «فنی و مهندسی»
جستجوی hybrid filtering در مقالات مجلات علمی
  • آرش خسروی*، محمدعلی صادقی

    حجم بسیار و روبه رشد اطلاعات بر روی اینترنت، فرآیند تصمیم گیری و انتخاب اطلاعات، داده یا کالاهای موردنیاز را، برای بسیاری از کاربران وب دشوار کرده است. سامانه های پیشنهاددهنده (توصیه گر)1 ، باهدف رفع این چالش به وجود آمده اند و تلاش می کنند تا از میان حجم عظیم اطلاعات، اطلاعات خاص و مفید را با توجه به علاقه و سلیقه کاربر و تجربیات کاربران گذشته به وی پیشنهاد دهند. تاکنون سامانه های پیشنهاددهنده زیادی در زمینه های کاربردی متنوع ازجمله فیلم، موسیقی، کتاب و... ایجادشده اند. انتخاب یک سفر مناسب، پیشنهاد هتل و... با توجه به بودجه ی فرد، معمولا سختی ها و نگرانی های زیادی را برای کاربران به همراه دارد و عموما با صرف زمان و انرژی زیادی انجام می گیرد. لذا در این مقاله یک سیستم پیشنهاددهنده سفر و هتل ارایه می شود که از ترکیب روش فیلترهای مختلف ساخته شده است تا دقت آن دوچندان شود. این سیستم برای ارایه پیشنهادهای نهایی خود، سلایق کاربر جاری، کیفیت مجموعه های خدمات دهنده و تجربیات گذشته کاربران مشابه با کاربر جاری را مدنظر قرار داده و بدین ترتیب علاوه بر ارایه پیشنهادهای دقیق تر، مشکل شروع سرد2 را که معمولا برای کاربران جدید بروز می کند که در سیستم ثبت نام می کنند و سیستم هیچ اطلاعاتی از نظرات یا علایق کاربر ندارد، نیز برطرف می نماید. در چنین شرایطی، سامانه ها معمولا از یادگیری فعال3 یا استفاده از ویژگی های شخصیتی کاربر، برای حل مشکل استفاده می کنند.

    کلید واژگان: سیستم پیشنهاددهنده, فیلترینگ ترکیبی, الگوریتم خفاش, فیلترینگ مشارکتی, فیلترینگ مبتنی بر محتوی
    Arash Khosravi, Mohammad Ali Sadeghi

    The growing amount of information on the internet has made it difficult for many web users to make the decision-making and selection of information, data or goods. Recommended systems are designed to address this challenge and try to offer specific and useful information with respect to user tastes and past user experiences. So far, many offering systems have been developed in a variety of applications including movies, music, books, hotels etc. Choosing the right trip, the hotel proposal and so on, with regard to the individual's budget usually have a lot of difficulties and concerns for users and generally takes a lot of time and energy. In this paper, a travel and hotel recommendation system is developed which is constructed from combination of different filtering methods to maximize accuracy. The system is considering the current user's preferences, the quality of the service packages and past experiences of the same users with the current user in order to providing more accurate suggestions. It also eliminates the cold start problem.

    Keywords: Recommended System, Bat Algorithm, Hybrid Filtering, Collaboration Filtering, Content-Based Filtering, Meta-Heuristic Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال