به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "uncertainty" در نشریات گروه "فناوری اطلاعات"

تکرار جستجوی کلیدواژه «uncertainty» در نشریات گروه «فنی و مهندسی»
  • Hamidreza Safa, Aliasghar Ghadimi *, Mohammadreza Miveh

    Renewable energy sources are particularly important in clean energy transitions and must be considered in Generation Expansion Planning (GEP) problems due to low cost, ease of installation, and ability to implement Demand Response (DR) programs. However, challenges such as the stochastic nature of renewable energy sources, consumer unawareness regarding participation in DR programs, and difficulties in integrating some resources have posed challenges to the use of these resources in the GEP problem. This paper addresses these challenges by using the Weibull distribution function to model wind power plants' uncertainty and rewards and penalties to motivate consumer participation in the GEP problem. To achieve these objectives, initially, the adequacy assessment of the generation system is performed analytically using the reliability index, which includes Expected Energy Not Supplied (EENS), considering the forced outage rate of generators in the DIgSILENT power factory through Python programming. Subsequently, an optimized GEP model is presented to enhance the generation system's adequacy against short-term demand for the next year. In this model, wind farms along with the DR program are integrated and optimized using the genetic algorithm, employing Python programming. The genetic algorithm selects the number of existing turbines in the wind power plant and the level of consumer participation needed to reduce the EENS to the desired value at the minimum cost. Validation of the proposed model is conducted on a 9-bus network. The strength of the presented method lies in its applicability to real-world networks modeled in the DIgSILENT power factory.

    Keywords: System Adequacy Assessment, Generation Expansion Planning, Wind Power Plant, Uncertainty, Demand Response, Reliability
  • Mona Naghdehforoushha, Mehdi Dehghan Takht Fooladi, MohammadHossein Rezvani *, MohammadMehdi Gilanian Sadeghi

    Today, cloud markets, especially Amazon, have attracted a lot of attention from users due to the provision of Spot Virtual Machines (SVMs). It has several advantages for both sides of the market. On the one hand, Amazon can generate revenue from its underutilized virtual machines. On the other hand, the customer can get the SVM as needed at a dynamic price through an auction method. Providing optimal bidding strategies in such a market is a crucial challenge. The bidding price is affected by uncertain parameters such as the price of SVMs, the number of available SVMs, the number of current customers, and their bidding values. In this paper, we use Information Gap Decision Theory (IGDT) to determine the best bidding strategy. Our proposed method includes both risk-averse and risk-neutral strategies. The evaluation results based on historical Amazon EC2 prices confirm the effectiveness of the proposed method in the presence of uncertain prices. It has high performance compared to the baseline methods in terms of robustness cost, uncertainty budget, and execution time.

    Keywords: Cloud spot market, bidding strategy, Uncertainty, Information Gap Decision Theory (IGDT)
  • Farhad Amiri, Mohammad Hassan Moradi *
    With the presence of distributed energy resources in the microgrid, the problem of load-frequency control (LFC) becomes one of the most important concerns. With changing the parameters of the microgrid components as well as the disturbances forced to the grid, designing a suitable LFC becomes more difficult. In this paper, the design of a Robust model predictive controller (RMPC) based on the linear matrix inequality as a secondary controller LFC system is discussed for controlling a microgrid on the shipboard. The main purpose of the proposed method is to improve the frequency stability of the microgrid in the presence of disturbances and the uncertainty of its parameters. The proposed controller simulation results, in several different scenarios, considering The uncertainty of the microgrid parameters as well as the input disturbances are compared. The main controllers are the fuzzy proportional-integral type1 and 2, and multi-objective multi-purpose functions optimized with the MOFPI (MBBHA), MOIT2FPI (MBHA) algorithm. The effectiveness of the proposed method in terms of The response speed and reduction of fluctuations and overcome uncertainties of the parameters, as well as robustness to disturbances, are discussed. Simulation is implemented in MATLAB software. The proposed method reduces the frequency oscillations caused by disturbances on the microgrid by 68% (68% improvement over other methods used in this field). Also, using this method, the damping speed of microgrid frequency fluctuations is increased by 53% (performance improvement).
    Keywords: microgrid on the shipboard, Load-frequency control, Linear matrix inequality, Uncertainty
  • Farid Pourofoghi *
    In most real-world issues, we are dealing with situations where accurate data and complete information are not available. One way to deal with these uncertainties in real life is to use Grey System Theory (GST). In this paper, a linear programing problem in a grey environment with interval Grey Numbers (GN) is considered. Most of the proposed methods for solving grey linear programing problems are done by using GN whitening and turning the problem into a common linear programing problem. However, in this paper we seek to solve the grey linear programing problem directly without turning it into a regular linear programing problem in order to maintain uncertainty in the original problem data in the final answer. For this purpose, by proving the desired theorems, we propose a method based on the initial simplex algorithm to solve grey linear programing problems. This method is simpler than the previous methods. We emphasize that the proposed concept is useful for real and practical situations. To illustrate the efficiency of the method, we solve an example of Grey Linear Programming (GLP).
    Keywords: Uncertainty, Grey interval numbers, Grey linear programming
  • سید امیرهادی مینوفام، حسن رشیدی*

    با رشد روز افزون تاثیر فناوری نوین در بازار جهانی، معیارهای تصمیم‌گیری برای برنامه ریزی بنگاه‌های اقتصادی درگیر چالش‌هایی می‌باشد. یکی از رویکردهای مناسب برای مقابله با این چالش‌ها، استفاده از سیستم‌های پشتیبانی تصمیم با بکارگیری نظریه مجموعه‌های ناهموار است. در این مقاله، یک سیستم پشتیبانی تصمیم به همراه الگوریتمی بر اساس نظریه مجموعه‌های ناهموار برای تصمیم‌گیری پیشنهاد می‌‌گردد. این الگوریتم برای یکی از خطوط تولید در یکی از بنگاه‌های تحت پوشش وزارت صمت، پیاده سازی و اثرات متغیرها بر اهداف آن بررسی شده است. برای تحلیل و ارزیابی نتایج، دو شاخص قدرت و پشتیبانی در قوانین موجود نظریه مجموعه‌های ناهموار، مورد استفاده قرار گرفت. این قوانین در سه دسته، مورد بررسی قرار گرفتند و از بین 12 قانون، سه قانون دارای ارزشی متوسط در آن دو شاخص هستند که همیشه برقرار می باشند. بقیه قوانین توزیع ناهمگنی دارند و امکان نقض شدن 3 مورد از قوانین نیز وجود دارد. مزایای استفاده از سیستم پیشنهادی، جلوگیری از اتلاف سرمایه بنگاه، پیشگیری از اشتباهات ناشی از عدم قطعیت موجود در داده‌ها، دقت بالا در تصمیم گیری، افزایش سادگی و سرعت در انجام تصمیم گیری‌های حیاتی برای این بنگاه و بنگاه‌های اقتصادی مشابه می‌باشد که بر اساس نظرات تصمیم گیرندگان در این بنگاه، مورد تایید قرار گرفت. 

    کلید واژگان: برنامه ریزی بنگاه, سیستم پشتیبانی تصمیم, عدم قطعیت, کاهش داده ها, نظریه مجموعه های ناهموار
    Hassan Rashidi *

    Increasing rate of novice technology in global marketing arises some challenges in the economic enterprise planning. One of the appropriate approaches to resolve these challenges is using rough set theory along with decision making. In this paper, a decision support system with an algorithm based on rough set theory is provided. The proposed algorithm is implemented for a product line in one of the organizations under supervision of mining, industry and trade ministry. The variable effects on the enterpise aims are evaluated by analysing the strength and support criteria of rough sets. The rules are classeified as three different classes and 3 out of 12 have high reasonable averagewhie the last 3 have a relatively high violation probability. The other rules have heterogenious distribution and are not certain. The advantages of the proposed system are avoidance of enterprse capital wasting, prevention of errors due to data uncertainty, and high precision of decitions. The decision makers in the enterprise validated the increasment of simplicity and speeds of vital decision making by using the proposed system.

    Keywords: Enterprise planning, Decision Support system, Uncertainty, Data reduction, Rough set theory
  • Bijan Mohammadi*

    This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.

    Keywords: Uncertainty, Optimization, Complexity
  • Davood Darvishi*

    Linear programming problems with interval grey numbers have recently attracted some interest. In this paper, we study linear programs in which right hand sides are interval grey numbers. This model is relevant when uncertain and inaccurate factors make difficult the assignment of a single value to each right hand side. Some methods have been developed for solving these problems. In this paper, we propose a new approach for solving interval grey number linear programming problems is introduced without converting them to classical linear programming problems. A numerical example is provided to illustrate the proposed approach.

    Keywords: Grey number, linear programming, Optimization, uncertainty
  • Maryam Ghorbani, Hamid Ghadiri *
    By introducing Colpitts oscillator as a chaotic system, this paper deals with back-stepping control method and investigates the restrictions and problems of the controller where non-existence of a suitable response in the presence of uncertainty is the most important problem to note. In this paper, the back-stepping sliding mode method is introduced as a robust method for controlling nonlinear Colpitts oscillator system with chaotic behavior. Thereafter, we simulated the proposed method and compared its advantages with that of the previous method.  The experimental results show that the most important advantages of the proposed method are making system robust in case of uncertainties and disturbances, and also having a fast response.
    Keywords: Back-Stepping Sliding Mode Controller, Chattering Phenomena, Chaos, uncertainty, MAE, MSE
  • محمدرضا غلامیان، عظیمه مظفری *
    هدف از انجام این پژوهش ارائه روشی برای بخش بندی مشتریان بانک بر مبنای مدل RFM در شرایط عدم قطعیت می باشد. در چارچوب پیشنهادی این پژوهش پس از تعیین مقادیر شاخص های مدل RFM شامل تازگی مبادله (R)، تعداد دفعات مبادله (F) و ارزش پولی مبادله (M) برای از بین بردن عدم قطعیت حاکم بر آن ها، از تئوری اعداد خاکستری استفاده شده و با استفاده از یک روش متفاوت به بخش بندی مشتریان پرداخته شده است. به این ترتیب مشتریان بانک به سه بخش یا خوشه اصلی تحت عنوان مشتریان خوب، معمولی و بد تفکیک شده اند. پس از اعتبارسنجی خوشه ها با استفاده از شاخص های دان و دیویس بولدین، ویژگی های مشتریان در هر یک از بخش ها شناسایی شده است. در پایان نیز پیشنهادهایی جهت بهبود سیستم مدیریت ارتباط با مشتری ارائه می گردد.
    کلید واژگان: مدلRFM, عدم قطعیت, بخش بندی, عدد خاکستری, داده کاوی
    Mohammad Reza Gholamian, Azime Mozafari *
    The purpose of this study is presentation a method for clustering bank customers based on RFM model in terms of uncertainty. According to the proposed framework in this study after determination the parameter values of the RFM model, including recently exchange (R), frequency exchange (F), and monetary value of the exchange (M), grey theory is used to eliminate the uncertainty and customers are segmented using a different approach. Thus, bank customers are clustered to three main segments called good, ordinary and bad customers. After cluster validation using Dunn index and Davis Bouldin index, properties of customers are detected in any of the segments. Finally, recommendations are offered to improve customer relationship management system.
    Keywords: RFM Model, Uncertainty, Clustering, Grey Number, Data Mining
  • Behrouz Safarinejadian*, Mohsen Taher
    In this paper, a novel filter is provided that estimates the states of any nonlinear system, both in the presence and absence of uncertainty with high accuracy. It is well understood that a robust filter design is a compromise between the robustness and the estimation accuracy. In fact, a robust filter is designed to obtain an accurate and suitable performance in presence of modelling errors. So in the absence of any unknown or time-varying uncertainties, the robust filter does not provide the desired performance. The new method provided in this paper, which is named hybrid robust cubature Kalman filter (CKF), is constructed by combining a traditional CKF and a novel robust CKF. The novel robust CKF is designed by merging a traditional CKF with an uncertainty estimator so that it can provide the desired performance in the presence of uncertainty. Since the presence of uncertainty results in a large innovation value, the hybrid robust CKF adapts itself according to the value of the normalized innovation. The CKF and robust CKF filters are run in parallel and at any time, a suitable decision is taken to choose the estimated state of either the CKF or the robust CKF as the final state estimation. To validate the performance of the proposed filters, two examples are given that demonstrate their promising performance.
    Keywords: Uncertainty, State Estimation, Cubature Kalman Filter (CKF), Robust CKF, Hybrid Robust CKF
  • A.H. Shokouhi *, H. Shahriari
    In traditional data envelopment analysis (DEA) the uncertainty of inputs and outputs is not considered when evaluating the performance of a unit. In other words, effects of uncertainty on optimality and feasibility of models are ignored. This paper introduces a new model for measuring the efficiency of decision making units (DMUs) having interval inputs and outputs. The proposed model is based on interval DEA (IDEA) in which the inputs and outputs are limited to be within uncertainty bounds. In this model, the inputs and outputs take fixed values for each DMU such that the sum of efficiencies is maximized. The DMUs are evaluated by the same production possibility set (PPS). The efficiency is measured based on the proposed conservatism level for each input and output. Indeed, the inputs and outputs are defined by the presented conservatism level. The proposed model is integrated measuring all the DMUs efficiencies simultaneously. These efficiency scores lie between the optimistic and pessimistic cases introduced by Despotis and Similar (2002) [11].
    Keywords: Data envelopment analysis, Efficiency, Integrated model, Uncertainty, Conservatism level
  • حسن رجائی*، فاطمه جاذبی، عباس رشیدی
    برای زمان بندی پروژه باید به عدم اطمینان موجود در مورد بعضی پارامترهای پروژه مانند هزینه و زمان پروژه توجه شود. برای درنظر گرفتن عدم قطعیت  مذکور از تیوری فازی استفاده می شود. در این مقاله روشی برای زمان بندی پروژه با توجه به فازی بودن زمان فعالیت ها، محدودیت منابع و جستجو برای یافتن مناسب ترین برنامه زمان بندی فازی پروژه ارایه شده است. برای تهیه این نوع برنامه زمان بندی، ابتدا با توجه به میزان منابع موجود و زمان عادی فعالیت ها، انواع برنامه های زمان بندی ممکن تهیه می شود. زمان پایان پروژه و هزینه آن برای هر کدام از برنامه های زمان بندی محاسبه می شود. در صورتی که هیچ کدام از برنامه های زمان بندی تهیه شده نتوانند هر دو هدف را ارضاء کنند، با تغییر زمان فعالیت ها و میزان منابع موجود، برنامه های زمان بندی مناسب تری تهیه می شوند. در انتها از بین همه برنامه های زمان بندی، برنامه ای که با توجه به اهمیت هرکدام از دو معیار هزینه و زمان، بهترین شرایط را داشته باشد انتخاب می شود. جهت تهیه برنامه زمان بندی اولیه پروژه از نرم افزار PRIMAVERA و  برای تهیه  الگوریتم جستجوی مذکور از زبان برنامه نویسی C++ استفاده شده است. از الگوریتم فوق برای زمان بندی یک پروژه پل سازی واقعی استفاده شده و نتایج مناسبی بدست آمده است.
    کلید واژگان: زمان بندی فازی, عدم قطعیت, هزینه, زمان, عدد فازی شش نقطهای, محدودیت منابع
    H. Rajaee *, F. Jazebi, A. Rashidi
    To schedule a project, you need to pay attention to the uncertainty about some of the project's parameters, such as the cost and time of the project. Fuzzy theory is used to consider this uncertainty. This article gives you a brief overview on project scheduling and how it works. To prepare this type of scheduling program, first, according to the amount of available resources and the normal time of activities, various possible scheduling programs are prepared. The project completion time and cost are calculated for each schedule. If neither of the scheduled schedules can meet both goals, better timing plans will be provided by changing the timing of activities and the amount of resources available. In the end, among all the scheduling programs, the one that has the best conditions according to the importance of each of the two criteria of cost and time is selected. PRIMAVERA software has been used to prepare the initial scheduling program and C ++ programming language has been used to prepare the mentioned search algorithm. The above algorithm has been used to schedule a real bridge construction project and good results have been obtained.Send
    Keywords: Fuzzy timing, Uncertainty, cost, Time, six-point fuzzy number, resource constraints
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال