به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « annular plates » در نشریات گروه « مکانیک »

تکرار جستجوی کلیدواژه «annular plates» در نشریات گروه «فنی و مهندسی»
  • Dilsukh Vasara, Sumit Khare *, Akhilesh Malguri, Rahul Kumar
    The article presents non-axisymmetric free vibration results of porous bi-directional functionally graded (BDFG) plates. The bi-directional grading index changes with the thickness (z-) and radial (r-) directions and porosity distributions are classified as uniform or non-uniform type. A displacement field model is formulated based on First-order Shear Deformation Theory (FSDT). Hamilton’s principle is used to develop the governing equations for porous BDFG plates. The spatial discretization of the proposed mathematical model in five variables is carried out using the fast converging Differential Quadrature Method (DQM).  The numerous examples demonstrate the accuracy and stability of the present DQM model by comparing the reported results available in the literature. The influence of aspect ratios, boundary conditions, and porosity distributions on the free vibration response of porous bi-directional functionally graded material plates is investigated intensively. These findings reveal that increasing the porosity volume fraction significantly impacts the mechanical properties of porous bi-directional functionally graded plates.
    Keywords: Porous bi-directional functionally graded materials, vibration, Circular, Annular plates, Non-axisymmetric, DQM}
  • M. Molla Alipour, M. Shariyat, M. Shaban *

    In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is assumed to be supported by a non-uniform Winkler-type elastic foundation in addition to the edge constraints. Therefore, the considered problem contains some complexities that have not been considered together in the available researches. The proposed unified formulation is derived based on the principle of minimum total potential energy and solved using a differential transform analytical method whose center is located at the outer edge of the shell or plate; so that the resulting semi-analytical solution can be employed not only for truncated conical shells and annular plates, but also for complete conical shells and circular plates. Accuracy of results of the proposed unified formulation is verified by comparing the results with those of the three-dimensional theory of elasticity extracted from the ABAQUS finite element analysis code. A variety of the edge condition combinations are considered in the results section. A comprehensive parametric study including assessment of influences of the material properties indices, thickness to radius ratio, stiffness distribution of the elastic foundation, and various boundary conditions, is accomplished. Results reveal that influence of the meridian variations of the material properties on the natural frequencies is more remarkable than that of the transverse gradation.

    Keywords: Free vibration, Bidirectional functionally graded, Conical, cylindrical shells, Annular plates, Non-uniform elastic foundationAnnular plates, Non-uniform elastic foundation}
  • A. R Golkarian_M Jabbarzadeh *_Sh Dastjerdi
    This study is the first report of numerical solution of nonlinear bending analysis for annular and circular plates based on 3D elasticity theory with asymmetric boundary conditions using semi-analytical polynomial method (SAPM). Orthotropic annular and circular plates are subjected to transverse loading and 3D bending analysis in the presence of symmetric and asymmetric boundary conditions is studied. For asymmetry cases, the plate boundaries are divided to two or three parts and various boundary conditions such as clamped, simply-supported and free edges are defined for each part. The asymmetry in one and two directions is studied. The influence of elastic foundations, mechanical and thermo-mechanical loadings are examined. Regarding this fact that no study has been done in the case of asymmetric boundary conditions, the obtained results are compared with FEM results by ABAQUS. The results show good agreement with the literatures and FEM results, which it shows that the presented method can use to analyze the 3D bending of plates under asymmetric conditions. Also, it is observed that 3D elasticity estimates some higher deflections than other theories. But, the obtained results by 3D elasticity theory and those obtained by FEM analysis in the case of asymmetric conditions are so close.
    Keywords: 3D elasticity, SAPM, Annular plates, Nonlinear bending, Asymmetry}
  • Jimitkumar Patel, Gunamani Deheri
    This paper theoretically analyzes the combined effect of slip velocity and surface roughness on the performance of Jenkins model based ferrofluid squeeze film in curved annular plates. The effect of slip velocity has been studied resorting to the slip model of Beavers and Joseph. The stochastically averaging method of Christensen and Tonders has been deployed for studying the effect of surface roughness. The pressure distribution is derived by solving the associated stochastically averaged Reynolds type equation with suitable boundary conditions, leading to the computation of load car- rying capacity. The graphical representations reveal that the transverse surface roughness adversely affects the bearing performance. However, Jenkins model based ferrofluid lubrication offers some scopes in minimizing this adverse effect when the slip parameter is kept at minimum. Of course, an appropriate choice of curvature parameters adds to this positive effect in the case of negatively skewed roughness. Moreover, it is established that this type of bearing system supports certain amount of load; even when there is no flow which does not happen in the case of conventional lubricant based bearing system.
    Keywords: Jenkins model, Slip velocity, Magnetic fluid, Annular plates, Roughness}
  • Vahid Tahouneh, Jafar Eskandari, Jam
    The The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of elastically supported continuously graded carbon nanotube-reinforced (CGCNTR) annular plates. The volume fractions of oriented, straight single-walled carbon
    nanotubes (SWCNTs) are assumed to be graded in the thickness direction. An equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). A semi-analytical approach composed of 2-D differential quadrature method and series solution is adopted to solve the equations of motion. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs and different CNTs distributions on the vibrational characteristics of CGCNTR annular plates.
    Keywords: Three, dimensional free vibration, Continuously graded carbon nanotube, reinforced, Annular plates, Two, parameter elastic foundations}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال