جستجوی مقالات مرتبط با کلیدواژه "bubble size" در نشریات گروه "مکانیک"
تکرار جستجوی کلیدواژه «bubble size» در نشریات گروه «فنی و مهندسی»جستجوی bubble size در مقالات مجلات علمی
-
This paper investigates the air bubble size and its transition in a horizontal tube of 700 mm. The tube was assembled with a venturi-nozzle bubble generator. Air and water flow-rates vary in the present study. The data collection mainly used high-speed camera to capture the bubbles at different distances along the horizontal tube at water flow-rates (Qw) of 120-170 litre per min (LPM) and air flow-rates (Qa) of 2-10 LPM. MATLAB was used in image processing for evaluating the bubble size. The data interpretation used YW dimensionless parameter in representing the height of the bubbles’ vertical rise in the horizontal tube. The bubble size along the horizontal tube was characterized by the Weber number as well. The type of two-phase (water-air bubbles) flow along the horizontal tube from the venturi-nozzle bubble generator was determined using flow pattern map and Lockhart-Martinelli parameter. The bubble generator produced bubbles in the range of 0.8-3.1 mm at the inlet of horizontal tube. The bubble diameters increased as the bubbles moved horizontally from inlet to outlet of the horizontal tube and this finding was statistically significant. The vertical rise height of bubbles along the horizontal tube at different water and air flow-rates had been quantified and compared. The vertical rise height of bubbles increased axially from 41 % to 89 % from inlet to outlet of the horizontal tube. The bubbles’ vertical rise height increased when either the air flow-rate or water flow-rate is reduced. The mean Weber number increased along the horizontal tube due to an increase in bubble size. The decrease in water flow-rate caused a decrease in the mean Weber number. The Lockhart-Martinelli parameter of the water-air bubbles flow in the horizontal tube was within 0.58-2.94, indicating that it was a multiphase flow. The findings from this study give fundamental insight into bubble dynamics behaviour in its horizontal transition. This study focuses on the size and transition of air bubbles produced by venturi-nozzle bubble generator along a horizontal tube at different water and air flow-rates, unlike previous studies which only investigate the air bubbles inside or near bubble generator. These findings are very useful for practical industrial applications because the exact air bubble size before being used is known.Keywords: Horizontal flow, Flow visualization, Image processing, Statistical analysis, Bubble size, Inlet water flow-rate, Inlet air flow-rate
-
To investigate the characteristics of the bubbles trapped in liquid cross flow, air was injected into flowing water circulated in a closed loop. High speed photography was used to record bubble images instantaneously. An image-processing code was specifically developed to identify bubbles in the images and to calculate bubble parameters. Effects of the water velocity and the flow rate of the injected air on bubble patterns were investigated. The results indicate that the inclination of bubble trajectory relative to the nozzle axis is enhanced as the water velocity rises. Meanwhile, bubble size varies inversely with the water velocity. The bubble profile tends to be rounded as the water velocity increases. Fluctuations of the bubble velocity are intensified as the water velocity decreases. As the balance between the external forces exerted on the bubble is reached, an approximately linear relationship between the velocities of the bubble and the water is manifested. For a given equivalent bubble diameter, the bubble terminal velocity is higher than that associated with quiescent water. At small Eötvös number, the consistency of the bubble aspect ratio in the liquid flow and quiescent water is revealed. The range of Eötvös number is extended considerably due to the flowing water. Values of Weber number are accumulated in a range within which high bubble aspect ratio is associated with relatively high water velocity.Keywords: Bubble, Liquid cross flow, Air injection, Bubble trajectory, Bubble velocity, Bubble size
-
در مطالعه حاضر مهاجرت یک حباب شکل پذیر در جریان ترکیبی برشی ساده و پواسل در اعداد رینولدز محدود، بطور عددی بررسی شده است. معادلات ناویر-استوکس با رویکرد بقائی برای سیالات ترکم ناپذیر با استفاده از روش حجم محدود روی یک شبکه منظم، ساکن و جابجا شده حل شده است. وجه مشترک بصورت صریح توسط اتصال نقاط نشانگر از طریق روش ردیابی جبهه روی یک شبکه نامنظم، مثلثی و متحرک ردیابی شده است. اثرات کشش سطحی نیز از طریق اضافه کردن یک جمله منبع مناسب به معادلات حاکم به حساب آمده است هدف از این مطالعه پیش بینی مهاجرت یک حباب در جریان ترکیبی برشی ساده و پواسل می باشد و رفتار مهاجرت حباب با اندازه های مختلف و نسبت های چگالی و چسبندگی مخالف واحد بررسی شده است. نتایج نشان می دهد که تغییر شکل حباب بشدت به عدد کاپیلاری وابسته است. بنابراین، عدد بدون بعد مناسب برای کشش در وجه مشترک، عدد کاپیلاری است. با افزایش شعاع حباب نیروی روانسازی افزایش یافته و در نتیجه حباب در وضعیت تعادلی نزدیکتری نسبت به خط مرکزی تثبیت خواهد شد. در مرحله بعد، نیروی گرانش نیز اضافی شده است. با افزایش عدد باند، حباب در یک وضعیت تعادلی نزدیکتری نسبت به خط مرکزی تثبیت می گردد و تغییر شکل حباب افزایش میDHFN.کلید واژگان: روش حجم محدود, ردیابی جبهه, حباب شکل پذیر, اندازه حباب, عدد کاپیلاری, عدد باندThree-dimensional simulations are presented on the motion of a bubble between two parallel plates at a finite Reynolds number in a combined couette-poiseuille flow. The full Navier-Stokes equations are solved by a finite difference/front tracking method on a regular, fixed and staggered grid. Interface is tracked explicitly by connecting marker points on an irregular, triangle and moving grid. The interface effects are accounted for by adding appropriate source terms into the governing equations. The effects of the dimensionless numbers, such as, Capillary number, Reynolds number, and geometric ratio on the lateral migration of a bubble are studied in detail. Simulations also show that the bubble deformation depends strongly on the Capillary number. So that, the proper non-dimensional number for the interfacial tension is the Capillary number. As the radius of the bubble increases, the equilibrium position moves closer to the centerline. Then, the gravity force was added. Bubbles are more deformed with increasing the Bond number and move to an equilibrium position closer to the centerline.Keywords: Limited volume method, Tracking the front, Shaped bubble, Bubble size, Capillary number, Band number
-
Iranian Journal of Mechanical Engineering Transactions of ISME, Volume:13 Issue: 1, Mar 2012, PP 52 -67Gas holdup and bubble size are important parameters for simulation and designing in bubble column reactors. Because based on these parameters, the available gas-liquid interfacial area is defined for mass transfer. In this paper, the results of applying magnetic fields on the velocity field and volume fraction of gas holdup are reported. Hydrodynamics of the bubble column in the reactors is investigated numerically using Euler-Euler model, standard k-ε turbulence model considering axisymmetric assumption, and the control volume technique. The results show that the magnetic fields have minor effects on increasing the volume fraction of gas holdup, but it causes to change in the flow field and vortex. In addition, effects of other parameters as well as rotation of the fluid, bubble size, and variation of inlet velocity on the volume fraction of gas holdup have been presentedKeywords: Gas holdup, Magnetic field, Velocity field, Bubble size, Euler, Euler model
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.