به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « mems » در نشریات گروه « مکانیک »

تکرار جستجوی کلیدواژه «mems» در نشریات گروه «فنی و مهندسی»
  • حامد کاوند، جواد کوهسرخی*، رضا عسکری مقدم

    خواص الکتریکی مواد پیزوالکتریک نانوساختاری توجه بسیاری از محققین را در دهه گذشته به خود جلب کرده است. این ویژگی ها در میکرو حسگرهای پیزو الکتریک استفاده می شود. نیروی محرکه مکانیکی معمولا نتیجه تماس بین سطح پیزوالکتریک و یک جسم خارجی است. در این مقاله، تاثیر نیروی محرکه مکانیکی با استفاده از یک موج هوایی (آکوستیک) و یا خلاء بر روی دیافراگم سیلیکانی، مورد بررسی قرار گرفته شده است. تنش های موضعی ایجاد شده روی دیافراگم در اثر برخورد یک موج هوایی، تاثیر قابل توجهی روی ولتاژ پیک تا پیک حسگر پیزوالکتریک دارد که با اندازه گیری تغییرات این پارامتر می توان شدت موج هوایی را بدست آورد. برای بررسی این موضوع، دیافراگم بدون طرح و طرحدار که شامل میکروساختارهای سیلیکانی است مورد بررسی قرار گرفته شد و مشخص شد که ساخت یک حسگر پیزوالکتریک روی یک دیافراگم نازک و طرح دار می تواند باعث افزایش ولتاژ پیک تا پیک تا حدود 3/1 برابر گردد. آشکارسازی این تنش ها با استفاده از ماده پیزوالکتریک لایه نشانی شده روی دیافراگم نازک و منعطف، می تواند به عنوان یک میکروفن پیزوالکتریک و یا یک فشار سنج عمل کند که وجود میکروساختارها روی دیافراگم باعث افزایش حساسیت آنها خواهد شد.

    کلید واژگان: تنش مکانیکی, دیافراگم سیلیکانی, میکرو ساختارها, نانوساختارهای پیزوالکتریک, نانوسیم های اکسید روی, ادوات میکرو الکترومکانیکی}
    Hamed Kavand, Javad Koohsorkhi*, Reza Askari Moghaddam

    The electrical properties of nanostructured piezoelectric materials have attracted the attention of many researchers in the last decade. These features are used in piezoelectric micro-sensors. Mechanical propulsion is usually the result of contact between a piezoelectric surface and a foreign object. In this paper, the effect of mechanical propulsion using an air wave (sound) or vacuum on a silicon diaphragm is investigated. The local stresses created on the diaphragm due to the impact of an air wave have a significant effect on the peak-to-peak voltage of the piezoelectric sensor, which can be measured by measuring changes in this parameter. To investigate this, a micromachined diaphragm of silicon was examined and it was found that fabricating a piezoelectric sensor on a thin and patterned diaphragm could increase the peak-to-peak voltage by about 1.3 times. Detection of these stresses using piezoelectric material layered on the thin and formable diaphragm can act as a piezoelectric microphone or a barometer that the presence of microstructures on the diaphragm will increase their sensitivity.

    Keywords: Mechanical stress, Silicon diaphragm, Microstructures, Piezoelectric nanostructures, Zinc oxide nanowires, MEMS}
  • E. Keykha, H .Rahmani *, H. Moeinkhah, M .Salehi Kolahi

    Regarding the necessity of designing high Q-resonators in micro electromechanical systems, this paper investigates the viscoelastic behavior of a rectangular micro-plate subjected to electrical actuation. Equations governing the vibrations of the homogeneous plate were obtained on the basis of classical plate theory (Kirchhoff's model). The Kelvin–Voigt model was also employed to consider the viscoelastic properties. The Galerkin decomposition method was used for decomposition of the governing differential equations. Additionally, the effects of various parameters were investigated on the Q-factor. Furthermore, a Finite Element simulation is carried out using COMSOL Multiphysics. The verification of the proposed model was conducted by comparing the obtained results with those from previous studies which revealed the validity of the proposed approach and the accuracy of the assumptions made The suggested design approach proposed in this this study is expected to design high Q-factor micro resonators and may be used to improve the performance of many MEMS devices.

    Keywords: Electrical actuation, Micro-plate, MEMS, Q-factor, Viscoelasticity}
  • Mortaza Aliasghary, Hamed Mobki *, Hassen M. OUAKAD
    Artificial Neural Networks (ANN) are designed to evaluate the pull-in voltage of MEMS switches. The mathematical model of a micro-switch subjected to electrostatic force is preliminarily illustrated to get the relevant equations providing static deflection and pull-in voltage. Adopting the Step-by-Step Linearization Method together with a Galerkin-based reduced order model, numerical results in terms of pull-in voltage are obtained to be employed in the training process of ANN. Then, feed forward back propagation ANNs are designed and a learning process based on the Levenberg-Marquardt method is performed. The ability of designed neural networks to determine pull-in voltage have been compared with previous results presented in experimental and theoretical studies and it has been shown that the presented method has a good ability to approximate the threshold voltage of micro switch. Furthermore, the geometric and physical effect of the micro-switch on the pull-in voltage was also examined using these designed networks and relevant findings were provided.
    Keywords: MEMS, Pull-in instability, Electrostatic, Artificial Neural Network‎}
  • سید فرحان موسویان، داریوش برزویی، میثم فرج الهی *

    سنسورهای فشار دیافراگمی در صنایع مختلفی مورد استفاده قرار میگیرند. پژوهش های زیادی برایبهینه سازی و ارتقای کیفی این سنسورها انجام گرفته است. در این مقاله، "حساسیت" به عنوان یک متغیر کلیدی در طراحی سنسور فشار دیافراگمی مبتنی بر فناوری میکروالکترومکانیک مورد بررسی قرار گرفته است. هندسه دیافراگم یکی از تاثیر گذارترین متغیرها در حساسیت یک فشار سنج دیافراگمی است که می تواند علاوه برحساسیت، محدوده عملکردی، دقت سنسور، ابعاد و حتی قیمت آن را تحت تاثیر قرار دهد. لذا با هدف افزایشعملکرد و حساسیت سنسور های فشار، نسبت به شبیه سازی دیافراگم سنسور در نرم افزار تجاری آباکوس اقدام گردید و ضمن اعتبار سنجی حلگر محاسباتی، هندسه های مختلف دیافراگم مورد ارزیابی قرار گرفت. نتایج بدست آمده گواه آن بود که دیافراگم دایره ای دارای بهترین علمکرد است. در اثر موج دار کردن سطح دیافراگم بررسی شد و شکل های مختلفی از موج های ایجادی در بستر دیافراگم، شبیه سازی گردید. نتایج بدست آمده حاکی ازآن بود که ایجاد موج دایره ای با شعاع 51 میکرومتر در انتهای سطح دیافراگم، موجب افزایش 51 درصدی حساسیت سنسور می گردد.

    کلید واژگان: فشار سنج, فناوری میکروالکترومکانیک, حساسیت, تحلیل المان محدود, دیافراگم موج دار}
    Seyed FarhanMoosavian, Daryoosh Borzuei, MeisamFarajollahi*

    Diaphragm pressure sensors are used in various industries. Much research has been done to optimize and improve the quality of these sensors. This paper investigates "sensitivity" as a critical variable in diaphragm pressure sensors based on MEMS technology. Aperture geometry is one of the most influential variables in the sensitivity of a diaphragm sphygmomanometer, which in addition to sensitivity, can affect other variables such as operating range, sensor accuracy, dimensions, and even price. To increase the performance and sensitivity of pressure sensors, the sensor aperture was simulated in AbaqusFEA software, and while validating the computational solver, different geometries were evaluated. The results showed that the circular diaphragm has the best performance. Then the effect of corrugations on the surface of the diaphragm was investigated, and different forms of waves were simulated. The results showed that creating a circular wave with a radius of 15 μm at the end of the diaphragm surface increases the sensor's sensitivity by 18%.

    Keywords: Pressure sensor, MEMS, Sensitivity, FEA, corrugated diaphragm}
  • Valery Dragunov, Dmitriy Ostertak *, Dmitry Kiselev, Evgeniya Dragunova
    An influence of mechanical impacts between variable capacitor electrodes on the electrostatic vibration energy harvester (e-VEH) operation is studied theoretically. The analysis is carried out for two conditioning circuits with parallel and serial load connection. A relationship between e-VEH parameters and external mechanical force characteristics enabling to assess the possibility of operation in a periodic impact mode is obtained. Dependences of the average power generated by the impact-enhanced e-VEH versus the number of collisions between the electrodes and the load resistor value are calculated. The operation of the harvester for two circuits in impact and non-impact modes is compared and analyzed. It is shown that the average power generated by the e-VEH for the impact mode can exceed the power for the non-impact mode by 1–2 orders of magnitude along with a significant decrease of the harvester optimal load resistance.
    Keywords: MEMS, vibration energy harvesting, periodicity, Power, spatial limitations‎}
  • Mohammad Tahmasebipour *, Younes Tahmasebipour, Mahya Boujari Aliabadi, Shadi Ebrahimi

    In this study, the micro electro-polishing method was employed to improve the surface quality of microbeams machined by the micro WEDM method and to remove the recast layer. This approach changes the dimensions of the microbeams, as a result of the electrochemical corrosion, in addition to the elimination of the recast layer. To diminish the impact of this process on the dimensional deviation of the fabricated microbeams, the influence of the micro electro-polishing process parameters such as voltage, duration, cathode diameter, and electrolyte composition on the dimensional deviation of microbeams was studied using the Taguchi method. The optimum values of process parameters were determined by the S/N ratios analysis, and the order of parameters importance was determined through analysis of variance of the S/N ratios. It was found that the optimal levels of the process parameters are voltage of 2 V, process duration of 20 s, cathode diameter of 50 mm, and electrolyte composition of 25-5-40 ml (sulfuric-phosphoric-water) within the range of experiments. By using the optimum values of the parameters, the dimensional deviations were found to be 5.23 times lower compared to the average of the results.  The importance of process parameters was found to follow this order: electropolishing duration, electrolyte composition, cathode diameter, and process voltage.

    Keywords: Microelectromechanical Systems, MEMS, micro WEDM, micro polishing, micro electropolishing, wire electrical discharge machining}
  • Hamid Soleimanimehr *, Amin Nasrollah
    Ionic polymer material composites (IPMCs) are a group of polymeric material which deform by applying voltage and the movement of cations of polymer; it should be mentioned that the finite element method using electromechanics equations can be used to analyze these types of problem and measure the deformation. This phenomenon can causes bending and internal stress. This research, it is tried to investigate the displacement and stress of IPMC by modeling and finite element method analysis. Firstly, a 2D IPMC is designed; then the materials are applied which are cooper for the electrodes and Nafion for the polymeric core. After applying boundary conditions and meshing, the results have been analyzed by the finite element method. It is found that the relation between voltage and its effect on the bending displacement of IPMC is direct. The conclusions include the maximum displacement of IPMC membrane under the voltage of 5V is 0.42 mm and the maximum Von Mises stress on the electrode is gained 3.29×1016 (N/m2).
    Keywords: Ionic-polymer-metal Composites, Finite Element Method, voltage, displacement, smart material, MEMS}
  • علی اصغر یلدایی، حسین رحمانی*، فرامرز سرحدی، محمدرضا صالحی کلاهی

    با توجه به لزوم دستیابی به تشدیدگرهای با ضریب کیفیت بالا در سیستم های میکروالکترومکانیکی، شناخت و بررسی عوامل موثر بر ضریب کیفیت امری ضروری و اجتناب ناپذیر می باشد. در سیستم های میکروالکترومکانیکی از میکروصفحات مرتعش به عنوان تشدیدگر و فیلتر های RF و... استفاده می شود. در این پژوهش به بررسی اثر میرایی ترموالاستیک که از مهم ترین عوامل تاثیر گذار بر ضریب کیفیت می باشد، برای ارتعاشات عرضی میکروصفحه مستطیلی شکل در دو حالت آزاد و اجباری پرداخته شده است. ارتعاشات اجباری میکروصفحه در پژوهش حاضر ناشی از اعمال نیروی الکترواستاتیک در نظر گرفته می شود. جهت ساده سازی و حل معادلات از روش گالرکین استفاده شده است. نتیجه یک معادله جبری غیر خطی می باشد که می تواند برای محاسبه ضریب کیفیت میکروصفحات مستطیلی با شرایط مرزی مختلف مورد استفاده قرار گیرد. بر خلاف پژوهش های پیشین، مدل ارایه شده به طور مستقیم می تواند ضریب کیفیت را محاسبه کند و نیازی محاسبه فرکانس طبیعی در حالت بدون در نظر گرفتن میرایی ندارد. برای شبیه سازی اجزای محدود از نرم افزار کامسول مولتی فیزیکس استفاده شده است. در پایان پس از اطمینان از صحت نتایج، تاثیر پارامترهای مختلف بر ضریب کیفیت مورد بررسی قرار گرفته است. مدل ارایه شده جهت محاسبه ولتاژ ناپایداری پولین نیز می تواند موثر واقع شود. از نتایج این پژوهش می توان جهت طراحی سیستم های میکروالکترومکانیکی استفاده کرد.

    کلید واژگان: سیستم های میکروالکترومکانیکی, میکروصفحه, میرایی ترموالاستیک, ضریب کیفیت}
    AliAsghar Yaldaei, Hossein Rahmani *, Faramarz Sarhaddi, MohammadReza Salehi Kolahi

    Regarding the necessity of obtaining high-quality resonators in micro electromechanical systems (MEMS), recognizing and investigating the parameters that effect on the quality factor are essential and inevitable. In micro electromechanical systems, microplates are used as resonators and RF filters and so on. In this paper, the effect of thermoelastic damping, which is one of the most important factors affecting the quality factor, has been investigated for rectangular microplates. Galerkin method has been used to simplify and solve the governing equations. The result is a nonlinear algebraic expression for the quality factors of microplates of general conditions due to thermoelastic damping. Unlike previous researches, the proposed model can directly calculate the quality factor. COMSOL Multiphysics software is used for finite element simulation. After verification of the proposed model, the effect of various parameters is investigated. The proposed model can also be used to calculate the pull-in instability voltage. The results of current paper can be used to design micro electro mechanical systems (MEMS) and another applications can be defined for that.

    Keywords: MEMS, microplate, quality factor, Thermoelastic damping}
  • مینا قنبری*، قادر رضازاده
    در این مقاله میرایی فیلم نازک سیال در ریزتشدیدکننده های محرک-شانه ای مدور با درنظر گرفتن شرایط مرزی لغزش مورد بررسی قرار می گیرد. مدل پیشنهادی، شامل یک دندانه متحرک صلب به شکل میکرو صفحه یک سرگیردار می باشد که توسط دندانه های ثابت در بالا و پایین آن احاطه شده است. میکرو فاصله بین دندانه متحرک و دندانه های ثابت با سیال هوا پر شده است. معادلات حاکم بر ارتعاش طولی میکرو دندانه و همین طور حاکم بر میدان سیال با درنظر گرفتن فرضیات مناسب استخراج و پس از بی بعد سازی با بکارگیری روش عددی گلرکین جداسازی و بصورت عددی حل می شوند. هدف از حل معادلات، بدست آوردن فرکانس های میرایی و در نهایت ضریب میرایی معادل سیستم می باشد. سپس اثرات پارامترهای هندسی تشدیدکننده از جمله طول، ضخامت دندانه و همین طور اندازه شکاف سیال روی پاسخ سیستم مورد بررسی قرار می گیرد. همین طور بررسی اثرات لغزش سیال در سطوح مرزی نشان می دهد که لغزش سیال در نقاط مرزی باعث افزایش آزادی و دامنه حرکت مولکولهای سیال در مرز سیال-جامد شده و به تبع آن فاکتور کیفیت سیستم افزایش می یابد.
    کلید واژگان: سیستم های میکروالکترومکانیکی, میرایی فیلم نازک سیال, رزوناتورهای محرک- شانه ای, شرط مرزی لغزش, روش گلرکین, فاکتور کیفیت}
    Mina Ghanbari *, Ghader Rezazadeh
    In this paper, thin film damping in a rotary comb-drive resonator has been investigated. The proposed model for this study is made up of a rigid oscillating finger in a plate form suspended between two fixed fingers. The micro-gap between the vibrating finger and the fixed fingers is filled with air. Equations of motion governing the longitudinal vibration of the micro finger and the fluid field have been extracted considering reasonable assumptions. The coupled partial differential equations have been non-dimensionalized, discretized and solved simultaneously utilizing Galerkin-based Reduce order model. As the gap between the fingers is so small and comparable to the dimensions of the air molecules, the slip boundary condition is considered at the solid-fluid interface. Complex frequency approach is applied to predict the equivalent quality factor of the resonator. The effect of geometrical parameters of the resonator as the length, thickness and the fluid gap on the equivalent damping ratio of the resonator has been investigated. It has been shown that slip boundary conditions causes the freedom of the fluid motion at the boundaries to increase which results in increment of the quality factor of the resonator
    Keywords: MEMS, Thin film damping, Rotary resonator, Slip boundary condition, Galerkin method, Quality factor}
  • Hamid Najafpour Ahangar, Farshad Babazadeh*

    In this paper, design and simulation of a multi-ring disc microscope for use in positioning and navigation applications of mobile devices is reported.This microgyroscope is based on MEMS technology and is fully compatible with the manufacturing processes of microelectromechanical systems.In this paper, the output frequency response of a vibrating gyroscope based on a multi-ringdisc resonator in four different designs is analyzed using COMSOL Multiphysics software.The aim of this study was to improve the frequency response of multi-ringmicroelectromechanical (DRG) disk vibration resonator.First, three different structures were analyzed and then according to the obtained results and by comparing them, the fourth plan is proposed to improve and upgrade the structure.In this study, using a 5-ring resonatorwith an output resonant frequency in the range of 130 kHz to 250 kHz, the minimum frequency difference between two elliptical modes of 214 Hz was obtained. The lower the resonant frequency and the distance between the two resonant peaks of the resonant frequency, the higher the sensitivity of the gyroscope and thus the speed and accuracy of the gyroscope. The simulation results show that the resonator designed with more rings has a resonant frequency and the distance between the two resonance peaks is lower, which indicates its higher sensitivity, accuracy and quality factor.

    Keywords: Vibrationalgyroscope, Disc resonator, Microelectromechanical systems, MEMS}
  • Maryam Ghalenoei, Mehdi Zamanian *, Behnam Firouzi, Seyed Ali Asghar Hosseini
    In this study, static deflection, natural frequency and nonlinear vibration in bi-layer clamped-clamped microbeam are investigated. In this configuration, the second layer is the viscoelastic layer which covers a part of the microbeam length. This model is the main element of many chemical microsensors. The governing equations of motion for the system are obtained by Lagrange method and discretized using the assumed mode method. The non-uniform micro-beam modes shape are used as the comparison function in the assumed mode method. Initially, considering the DC voltage, system static response and natural frequency around the static position are obtained. Then, considering the AC voltage, the dynamic response around the dynamic position is calculated by both analytical (perturbation method) and numerical methods (Rung-kutta) and compared for validation purposes. The effect of different geometrical parameters of the viscoelastic layer on the static and dynamic behaviors of the system is also analyzed. The results indicate that the dimensions and location of the viscoelastic layer significantly affect the static and dynamic behavior of the system. Therefore, by using this property and considering the application of microsensors, their behaviors can be made efficient. For sensors operating based on resonance frequency shift, the optimum shift of frequency state can be obtained by varying the dimensions and position of the viscoelastic layer. Moreover, time of response can be optimized when the system is operating based on changes in the capacity of a capacitor. The results also represent that convergence in the assumed mode method used in this paper is feasible even using a single mode, whereas in previous works and using the Galerkin method, convergence was fulfilled in the presence of 3 modes.
    Keywords: MEMS, Viscoelastic, microbeam, Galerkin}
  • مرتضی طایفی، قاسم کاهه*، مجتبی مهرافروز

    در این پژوهش عملکرد یک واحد اندازه گیری ارزان قیمت اینرسیایی در یک پرواز زیرمداری از طریق تست کاوشگر تحقیقاتی مورد بررسی قرار گرفته است. بررسی های انجام شده نشان می دهد با پردازش و فیلترینگ مناسب، اطلاعات بسیار ارزشمندی از این حسگرها استخراج می شود که برای شناسایی رفتار ارتعاشی و دینامیکی کاوشکگر مفید بوده و می تواند نماینده ای خوبی از محیطی باشد که قطعات فضایی در ماموریت های فضایی تجربه می کنند.از آنجایی که کاوشگر مورد نظر در فاز ورود به جو یک جسم استوانه ای بدون دماغه و دارای یک فرم آیرودینامیکی نامتعارف می باشد و طی مسیر ورود به جو تلاطمات و حرکت های نوسانی با دامنه بالا را تجربه می کند، ثبت و شناسایی پارامترهای پروازی آن از مسایل چالش برانگیز هوافضایی محسوب می شود. در این تحقیق با استفاده از سنسورهای ارزان قیمت میکروالکترومکانیکی در تست پرواز و همچنین با کمک شبیه سازی غیرخطی و دقیق رفتار پروازی کاوشگر به ثبت و شناسایی پارامترهای پروازی پرداخته شده است.

    کلید واژگان: کاوشگر فضایی, واحد اندازه گیری اینرسی, میکروالکترومکانیکی, اندازه گیری, شبیه سازی}
    Morteza Tayfi, Ghasem Kahe *, Mojtaba Merafrooz

    Sounding rockets provide a useful platform for the aerospace research activities in which carry out a research payload to the space and recover it in the ground. In the flight path, it does scientific experiments and acquire the result for more analysis in the ground. All of the well-known aerospace centers around the world use frequently the various forms of sounding rocket to test and evaluate their sensitive space components. Actually, space qualification process of a space module is completed sometimes through a real space flight using the sounding rocket. In this paper the performance of a MEMS based inertial measurement unit (IMU) is investigated. The investigation result shows that using appropriate filtering, MEMS based IMU can measure appropriately the dynamic behavior of the sounding rocket. These data may be used for further identification and validation tests.

    Keywords: Sounding rocket, IMU, MEMS, Measurement}
  • حسینعلی اعلم حکاکان، امیررضا عسکری*

    هدف پژوهش حاضر بررسی پاسخ استاتیکی و دینامیکی میکروتیرهای غیرخطی هندسی ساخته شده از مواد تابعی مدرج در سیستم های میکروالکترومکانیکی (ممز) با هر دو الکترود متحرک می باشد. بدین منظور، با به خدمت گرفتن رابطه ی غیرخطی کرنش-جابه جایی در این سازه ها براساس تیوری غیرخطی فون کارمن، معادله ی حرکت سیستم با استفاده از اصل همیلتون استخراج شده و در ادامه با استفاده از روش باقیمانده ی وزن دار گلرکین حل می شود. یافته های استاتیکی و دینامیکی پژوهش پیش رو با نتایج موجود در ادبیات برای سیستم های با یک الکترود متحرک اعتبارسنجی می شوند. نتایج استاتیکی و دینامیکی حاضر برای سیستم های با هر دو الکترود متحرک نیز با آن چه از طریق شبیه سازی سه بعدی اجزاء محدود در نرم افزار تجاری کامسول بدست می آید، مقایسه شده و به صورت موفقیت آمیزی صحه گذاری می گردند. در ادامه، اثر متحرک بودن هر دو الکترود علاوه بر تاثیر تغییر جنس مواد به صورت تابعی مدرج و اینرسی بر پاسخ غیرخطی سیستم مورد بررسی قرار می گیرد. نتایج حاکی از کاهش چشم گیر اختلاف پتانسیل کشیدگی در صورت قابلیت حرکت هر دو الکترود می باشد.

    کلید واژگان: ممز, توانایی حرکت هر دو الکترود, رفتار غیرخطی هندسی, مواد تابعی مدرج, ناپایداری کشیدگی}
    H. A. Aalam Hakkakan, A. R. Askari*

    The objective of the present paper is to investigate the static and dynamic responses of geometric non-linear micro-beams, which are made of functionally graded materials, in double-movable-electrode micro-electro-mechanical systems (MEMS). To do so, employing the non-linear strain-displacement relation in such structures based on the von Kármán theory, the governing equations of motion have been obtained by Hamilton’s principle and then solved through the Galerkin weighted residual method. The static and dynamic findings of the present work have been verified by those available in the literature for single-movable-electrode systems. The present static and dynamic results for double-movable-electrode systems have also been compared and successfully validated by those obtained through 3-D finite element simulations carried out in COMSOL commercial software. At the rest of the paper, aside from the influence of the movability of both electrodes, the inertia and material graduation effects on the non-linear response of the system have been investigated. The results reveal that the movability of both electrodes drastically reduces the pull-in voltage of the system.

    Keywords: MEMS, Movability of both electrodes, Geometric non-linearity, Functionally graded materials, Pull-in instability}
  • C. Ahamed Saleel*, A. Algahtani, I. Anjum Badruddin, T. M. Yunus Khan, S. Kamangar, M. A. H. Abdelmohimen

    Abdelmohimen, Both micro electro mechanical systems (MEMS) based and lab-on-a chip (LoC) devices demand efficient micro-scale mixing mechanisms for its effective control which necessitates the quality research towards more efficient designs. A new venture is investigated in those direction with mixing micro-channel constricted with rectangular block under pressure-driven electro-osmotic flow and is numerically simulated by a modified immersed boundary method (IBM), an alternative technique in computational fluid dynamics (CFD). The electro-osmotic flow elucidated by electrical double layer theory when simultaneously considered with pressure driven flow in micro channels can be effectively figured out by the solution of Navier-Stokes equations linked with Nernst-Planck and Poisson equations for transportation of ion and electric field respectively. In this study, the effect of varying the height of rectangular block on the flow and mixing performance are analyzed. A hybrid method, which is a combination of active and passive techniques, is introduced simultaneously in the micro-channel by the electro-osmotic effects and channel constriction. The approach is on the basis of finite volume methodology on a staggered mesh. The governing equations are solved by a time-integration technique based on a fractional step method. The velocity fields are corrected by a pseudo-pressure term to ensure the continuity in each computational time step. The extent of mixing in every cross section of the micro channel is assessed by a suitable mixing efficiency parameter. This study has shed light on the most predominant factors that influence mixing efficiency in a micro-channel, such as geometry of the block, non-dimensional numbers (Reynolds number, Re and Peclet number, Pe), zeta potential, external electric field strength and electrical double layer (EDL) thickness. The maximum efficiency in this micro mixer design is found to be 51.3% for Reynolds number of 0.05 and Peclet number of 450 with the rectangular block height of 0.75. It is clear that both electro osmotic effects and flow perturbations due to channel constriction caused a remarkable improvement in mixing efficiency. The outcomes of this investigation are widely applicable in cooling of microchips, heat sinks of MEMS based devices, drug delivery applications and Deoxyribonucleic acid (DNA) hybridization. The present IBM model is validated by experimental and numerical results from the literature.

    Keywords: Immersed boundary method, Micro-channel, Electro-osmotic flow, Electrical double layer, Mixing, Mixing efficiency, Zeta potential, MEMS}
  • Abbas Rahi *
    The vibration analysis is an important step in the design and optimization of microsensors. In most of the cases, COMSOL software is employed to consider the size-dependency on the dynamic behavior in the MEMS sensors. In this paper, the Modified Couple Stress Theory (MCST) is used to capture the size effect on dynamic behavior in a microsensor with two layers of the silicon and piezoelectric. The governing equations of the system and also associated boundary conditions are derived based on the MCST and using Hamilton’s principle by obtaining the total kinetic and potential energies of the system. Then, the obtained governing equations are solved using an analytical approach to determine the natural frequencies of the system. The first, second and third natural frequencies of the microsensor are determined using an analytical approach. Finally, the natural frequency variations of the system are presented with respect to different values of the system parameters such as dimensionless parameters of the sensor geometric, the thickness of the silicon and piezoelectric layers and also the dimensionless material length scale parameter. The obtained results show that the material length scale parameter values and also the length, width, and thickness of each layer of the sensor are extremely effective on the vibration characteristics of the piezoelectric cantilever-based Micro Electro Mechanical System (MEMS) sensors. Also, the results show that the first natural frequency of the microsensor will decrease with either increasing dimensionless material length scale parameter or decreasing the thickness of silicon and piezoelectric. This analytical approach presents an efficient method to predict the dynamic behavior of microsensors and consequent optimization in their design procedure.
    Keywords: Free vibration, MEMS, Microsensor, Modified couple stress theory, Piezoelectric, Size-dependency}
  • Kurmendra *, Jagdeep Rahul, Rajesh Kumar

    In this paper, the presented work aims to provide a designed model based on Finite element method for detection of Malaria protozoan parasites. Micro-cantilevers are next generation highly efficient biosensors for detection and prevention of any disease. Here, an E-shaped model for micro cantilevered biosensor is designed using COMSOL Multiphysics specifically for detection of Malaria. Microcantilever materials viz Au, Cu, Si and Pt are used for sensing Malaria protozoan with proper optimization of device structure. The studies were carried out for stress developed and displacement occurred due to force applied through these protozoan biomolecules and varying beam length. Further, the designed structure was analyzed for different beam materials available for biosensor and it was found that Au is best suitable material for detection of malaria protozoan parasites since it has best sensitivity profile among presented materials. The results were also verified through analytical approach and it was found that both results obtained through simulation and analytical methods do closely agree with each other.

    Keywords: Biosensors, Malaria, MEMS, Microcantilever, Sensitivity}
  • S. Mukherjee, V. Shahabi, R. Gowtham Raj, K. S. Rajan, R. K. Velamati*
    Effects of Knudsen number, lid velocity and velocity ratio are investigated on the flow features of single lid driven cavity with an aspect ratio of one and double lid driven cavity of aspect ratio two. Knudsen numbers studied are 0.01(early slip regime), 0.1 (slip regime) and 1 (transitional regime). Lid velocities investigated are 100 m/s, 200 m/s and 500 m/s. The velocity ratios explored are 1 and -1. Knudsen number was found to have a huge impact on the flow rigidity. Lid velocity tends to shift the central vortex to the top left of the cavity for a cavity with aspect ratio of one and shifts the upper vortex to the top left of the cavity for a cavity with aspect ratio of two. Lid velocity does not affect the slip to a great extent on the lid. Changing the velocity ratio from 1 to -1 leads to the reversal of the relative vorticity in the top and bottom half of the cavity.
    Keywords: Rarefied gas dynamics, DSMC, OpenFOAM, MEMS, NEMS}
  • Y. Tahmasebipour, Ali Vafaie, Mohammad Tahmasebipour*
    Metal-based microelectromechanical systems are widely used in applications such as micro-energy harvesters, micro-heat exchangers and micro-electromagnetic that require high strength and flexibility. In the fabrication of such systems, micro wire electrical discharge machining (MicroWEDM) is majorly used. This paper studies the effect of the MicroWEDM process parameters on the dimensional deviation of machined MEMS structures including microcantilevers and micro-beams using the Taguchi method. Using optimal levels of the parameters including pulse duration (0.8 µs), cutting speed (8.4 mm/min), voltage (17 V) and wire tension (0.5 kg), the dimensional deviation is reduced about 8.65 times compared with the average of experiments results. The order of effect importance of the process parameters on the dimensional deviation of microstructures obtained by the ANOVA analysis of S/N ratios is as follows: pulse duration, wire tension, process voltage and cutting speed. Dimensional deviation of the micro-features was reduced to 1 μm using the optimal levels of the process parameters.
    Keywords: MEMS, Microbeam, Microcantilever, Micromachining, Micro Wire Electrical Discharge Machining, Micro-WEDM}
  • مهدی مجاهدی*، سپهر حکمی ها

    در این نوشتار ناپایداری کششی و جابه جایی میکروسوئیچ های میکروالکترومکانیک بررسی می شود. یک مدل غیر خطی استاتیکی همراه با در نظر گرفتن اثرات میدان های حاشیه یی و نظریه ی غیر کلاسیک کوپل تنش اصلاحی برای میکروسوئیچ ارائه شده است. این مدل از یک میکروتیر یک سرگیردار تشکیل شده که با یک فاصله ی اولیه نسبت به یک الکترود ثابت قرار گرفته و با اعمال ولتاژ به سمت آن خمیده می شود. معادلات استاتیکی حاکم با استفاده از روش کمینه سازی انرژی پتانسیل استخراج شده و با کمک روش های گلرکین، عددی و اجزاء محدود اقدام به حل معادلات می شود. اثرات پارامترهای مختلف بر ناپایداری استاتیکی میکروسوئیچ بررسی می شود و خطاهای ناشی از در نظر گرفتن مدل خطی یا نظریه های غیر کلاسیک محاسبه می شود. نتایج نشان می دهد که مدل ارائه شده به خوبی قادر به پیش بینی رفتار استاتیکی سازه و محدوده ی ناپایداری استاتیکی است.

    کلید واژگان: سیستم میکروالکترومکانیک, ناپایداری کششی استاتیکی, نظریه ی کوپل تنش اصلاحی, میدان حاشیه یی, جابه جایی های بزرگ}
    M. Mojahedi *, S. Hakamiha

    Microelectromechanical systems (MEMS) are used in many elds of industry like automotive, aerospace and medical instruments. Among the various ways to operate the MEMS devices, the electrostatic actuator is the common mechanism, due to simplicity and fast response. Previous experiments have shown that the mechanical behavior of devices, which their sizes are in order of micron and submicron, are dependent to size dependency. They also have illustrated that by decreasing the dimension of structures, the size dependent e ect is highlighted. In this case, the classical theories are not capable to predict the size dependent e ects and mechanical behavior of the microstructures properly. Therefore, nonclassical theories such as modi ed couple stress and strain gradient theories have been introduced. It was shown that the modi ed couple stress theory can accurately predict the size dependent behavior of microstructures. There are some in uences observed in the MEMS, that they have notable e ects on the mechanical behavior of microswitches, such as fringing elds and large de- ection. When the air gap is larger than the electrode's width of microswitches, the impacts of fringing elds and geometric nonlinearity signi cantly a ect the mechanical behavior of the system. Therefore, neglecting the abovementioned e ects leads to errors in the instability prediction of microswitches. Most of microswitches consist of a microcantilever with a proof mass and a xed substrate which there is an air gap between them. By applying voltage to the system, the microcantilever starts to de ect into the xed substrate. In this paper, pull-in instability and de ection of MEMS switches are investigated based on the size dependent model. The nonlinear model is introduced by considering modi ed couple stress theory and fringing eld e ects as well as geometric nonlinearity. Utilizing the minimum total potential energy principle, the static equation of motion is derived in framework of the nonclassical theory. The e ects of various parameters on static pull-in instability are studied and errors of considering the linear model or classical theories is calculated. The results show that the presented model is capable to predict the displacement and pull-in instability of the microswitches.

    Keywords: MEMS, static pull-in instability, modi edcouple stress theory, fringing feld, large deection}
  • Parishad Eghbali, Farshad Babazadeh *
    In this paper, design and simulation of an electroosmotic micropump for use in biomedical applications and drug delivery devices is reported. This electroosmotic micropump is based on MEMS technology and is fully compatible with the processes of manufacturing of electromechanical systems. The basis of the proposed micropump structure is based on the electroosmotic phenomenon and the main idea used in the proposed structure is to use the technique of increasing fluid and wall contact within the main channel of the micropump. To this end, the use of internal microchannels along the main channel path has been used; these embedded microchannels, by increasing the contact surface between the fluid and the wall, enhance the electroosmotic effect inside the micropump, resulting in an increase in fluid velocity and the output flow rate. Simulation results show that the minimum speed of a simple micropump with a length of 600 μm and a width of 300 μm and applied potential of 10 volts without internal microchannels is equal to 0.22 mm/min. In the proposed structure, with the addition of 8 internal microchannels with a length of 90 μm and a width of 20 μm inside the main channel of the micropump, the flow rate of the fluid reaches 7.8 mm per minute. According to the simulation results it can be seen that, by adding the proposed microchannels to the electroosmotic micropump structure, the fluid outlet speed compared to the non-microchannel mode increases dramatically by up to 35 times at the same potential.
    Keywords: Electroosmotic micropump, Microchannel, Drug delivery, Microelectromechanical systems, MEMS}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال