جستجوی مقالات مرتبط با کلیدواژه "particle deposition" در نشریات گروه "مکانیک"
تکرار جستجوی کلیدواژه «particle deposition» در نشریات گروه «فنی و مهندسی»-
A numerical investigation of the particle deposition characteristics inside film holes and on the blade was conducted using an improved particle deposition model and dynamic grid updating. The computation model was numerically simulated using Reynolds-Averaged Navier-Stokes (RANS) equations with second-order spatial accuracy and the SST k-ω turbulence model, combined User Defined Function (UDF) in FLUENT 2021R1. The influence of the deposition morphology on film effectiveness was analyzed. The results revealed that a conical deposition in the exit region inside the film holes enhanced the separation of the coolant ejected from the film holes at a low coolant mass flux ratio (MFR). Increasing the MFR inhibited deposition, and the enhanced particle detachment significantly reduced particle deposition inside the film holes. Deposition downstream of the film holes significantly affected the cooling performance. Strip deposition on both sides of the region covered by the coolant limited the spanwise diffusion of the coolant. Compared to the non-deposition case, The surface-averaged film effectiveness was lower after deposition at MFRs of 0.1%-0.5% and slightly higher at MFRs of 0.6%. The most significant reduction in the surface-averaged film effectiveness after deposition was 34.9% at an MFR of 0.3%.Keywords: Deposition Model, Dynamic Mesh, Film Cooling, Particle Deposition, Turbine Blade
-
مدلسازی عددی به منظور تسلط بر جزییات پیچیده نشست ذرات در مسایل صنعتی، اهمیت بسیاری دارد. شرایط و معادلات حاکم بر مدلسازی عددی تشکیل لایه نشست با توجه به عوامل موثر و نیروهای تاثیرگذار، متفاوت می باشد. در تحقیق حاضر، پیشنهادی در خصوص استفاده از شرایط و معادلات حاکم بر نشست ذرات، ارایه شده است. روش های مدلسازی عددی برحسب دو دیدگاه لاگرانژی و اویلری تقسیم می شوند. برای مدلسازی نشست ذرات در نسبت حجمی بیشتر از3-</sup>10 از روش های اویلری و در نسبت حجمی کمتر از3-</sup>10 از روش های لاگرانژی، استفاده می شود. در میان روش های اویلری، روش دریفت فلاکس متداول تر است. در روش های لاگرانژی، اگر ذرات کوچک باشند (نانومتری) و نسبت حجمی کمتر از 6-</sup>10 باشد به دلیل بیشتر بودن نیروی واندروالسی بین ذرات و محل نشست، از شرط دیوار چسبناک استفاده می شود. بعلاوه با افزایش اندازه ذرات، باید احتمال بازگشت دوباره آنها به جریان بررسی شود و در صورت بالا بودن سرعت جریان باید احتمال جدایش ذرات از لایه رسوب در نظر گرفته شود. دما نیز بر نشست ذرات تاثیرگذار است. افزایش دما باعث تغییر فاز ذرات و در نتیجه آن نشست آن ها در هنگام برخورد به سطح می گردد.
کلید واژگان: مدلسازی عددی, نشست ذرات, لایه رسوب, رویکرد لاگرانژی, رویکرد اویلریThe numerical modeling of particle deposition in industrial problems is essential due to domination on intricate details of this phenomenon. In the present study, suggestions for properly using the governing equations and conditions have been presented. Modeling particle deposition phenomenon is generally divided into the Lagrangian and Eulerian approaches. Eulerian approaches are used to model particles deposition when the volumetric ratio is higher than 10−3 and The Lagrangian approaches are used for the volumetric ratio of particles less than 10−3 . The Drift Flux method is more common among the Eulerian approaches than others. In Lagrangian approaches, if the particles are small (in Nano size), and the volumetric ratio of particles is less than 10−6 due to the greater Van der Waals force between the particles and deposition place, the condition of the sticky wall is invoked. Furthermore, with increasing the size of the particles, the possibility of rebounding after their collision should be investigated. Moreover, if the flow rate is high, the possibility of particles detachment from the deposited layer should be considered. Also, the temperature affects particles deposition. Increasing temperature changes the phase of the particles, and as a result, they settle when they hit the surface.
Keywords: Numerical modeling, Particle deposition, Deposition layer, Lagrangianapproach, Eulerian approach -
در این مقاله ته نشینی ذرات با اندازه های مختلف (10 نانومتر تا 10 میکرومتر) داخل اتاق با استفاده از مدل ادی های بزرگ و زمان آرامش چندگانه بر پایه روش شبکه بولتزمن مورد بررسی قرار گرفته است و اثر نیروهای بویانسی، درگ و برونین بر روی ته نشینی ذرات بر روی دیواره های مختلف اتاق اداری تحلیل شد. برای مدل کردن ادی های کوچک از مدل بهبودیافته اسماگورنسکی استفاده شد. برای بررسی ته نشینی ذرات داخل اتاق، تعداد 144 ذره در هر بازه زمانی 05/0 ثانیه از دریچه ورودی جریان به داخل اتاق تزریق شد و بعد از گذشت 30 ثانیه تزریق ذره متوقف گردید، در مجموع 86400 ذره وارد اتاق شد. نتایج به دست آمده نشان دادند که روش عددی مورد استفاده همخوانی خوبی با روش های عددی و آزمایشگاهی گذشته دارد. تعداد ذرات ته نشین شده بر روی دیواره های مختلف اتاق بر حسب زمان محاسبه گردید و مشاهده شد که تعداد ذرات ته نشین شده به مرور زمان افزایش می یابد و ته نشینی ذرات با اندازه بزرگتر بیشتر می باشد. تراکم ذرات داخل اتاق بر حسب زمان نشان داده شد. لحظه شروع تزریق ذرات به داخل اتاق، تراکم آنها در ناحیه ورودی بیشتر می باشد و به مرور زمان تراکم در نواحی دور از ورودی جریان افزایش می یابد. نتایج به دست آمده از این پژوهش در طراحی سیستم های تهویه مطبوع اتاق های اداری و بیمارستانی کاربرد قابل توجهی خواهد داشت.
کلید واژگان: روش شبکه بولتزمن, مدل حل ادی های بزرگ, پخش و ته نشینی ذرات, مدل بهبودیافته اسماگورنسکیIn this paper the Multi Relaxation Time Lattice Boltzmann Method in conjunction with the Large Eddy Simulation model was used to study the particle deposition in a room with various diameters (10nm-10µm)and the effect of buoyancy, drag and Brownian forces to particle deposition on the different walls of the room has been investigated. The sub-grid scale turbulence effects were simulated through a shear-improved Smagorinsky model. To simulate the particle deposition in the room, the particle injection process was initiated with 144 particles injected uniformly at the inlet with the same velocity as the airflow at every 0.05s; particle injection was stopped after 30s. Therefore, a total of 86400 particles were injected into the room. The present simulation results for the airflow showed good agreement with the experimental data and the earlier numerical results. The simulated results for particle dispersion and deposition showed that the numbers of deposited particles on the walls increases by augmentation of the time. When the particle injection started the concentration in the inlet jet region is more than other zones and that increases in the region far from the inlet by time. Present results will be interesting for designing air condition systems in the office and hospitals rooms.
Keywords: Lattice Boltzmann Method, Large Eddy Simulation, Particle Deposition, Shear Improved Smagorinsky Model -
To gain insights into ink material deposition behavior during Aerosol Jet® printing, particle deposition patterns on the plate of inertial impactor with circular laminar jet are investigated numerically with a lagrangian solver implemented within the framework of the OpenFOAM® CFD package. Effects of taper angle of the nozzle channel and jet-to-plate distance are evaluated. The results show quite different particle deposition patterns between tapered nozzle and straight nozzle. At jet Reynolds number Re = 1132, a tapered nozzle deposits particles to form a pattern with a high density ring toward the deposition spot edge, especially when the particle Stokes number St > St50, which is absent with a straight nozzle. Increasing the jet-to-plate distance tends to reduce such particle density peak. Reducing Re to 283 yields particle deposition patterns without the high density ring near the spot edge, with the same tapered nozzle. The particle deposition patterns with the straight nozzle at Re = 283 exhibit further reduced particle density around the spot edge such that the particle density profile appears more like a Gaussian function. In general, the effect of reducing Re on particle deposition pattern seems to be similar to increasing the jet-to-plate distance. The computed particle deposition efficiency η shows the fact that those particles around the jet axis, even with very small values of St, always impact the center of plate, as indicated by the nonvanishing value of η with substantial reduction of St. Such a small particle contamination typically amounts to ~10% of small particles (with StKeywords: Particle deposition, Laminar jet, Inertial impactor, Aerosol Jet®, Computational analysis
-
The aim of this paper is to study the deposition and dispersion of nano particles in fully developed laminar pipe flows numerically. To simulate particle transport and to locate the position of particles, the Eulerian - Lagrangian method is used under the conditions of one-way coupling. Due to studied range of particle diameters from 5 nm to 100 nm, the main effective force for particle deposition is the Brownian diffusion force. After studying the mesh independency and validating results, time history analysis of particle transport is also performed by injecting the particles from the inlet surface and tracking them at each moment. Furthermore, the effective parameters, i.e. particle diameter, pipe length and diameter, temperature and particle density are studied comprehensively. The results of time history analysis of particle transport show that nano particles with less diameters are more deposited in less time. Furthermore, maximum number of escaped particles from the pipe occurred at 0.035 s after injecting the particles for all studied particle diameters due to the studied flow rate and length of the pipe. The output of this study can provide a guideline for evaluating nano particle transport and deposition in fully developed laminar pipe flows.Keywords: Two Phase Gas – Solid Flow, Nano Particles, Particle Deposition, Fully Developed Laminar Flow, Lagrangian Particle Tracking
-
هدف از انجام این پژوهش، بررسی اثر نیروی ترموفورتیک بر ته نشینی ذرات نانو خروجی از اگزوز موتورهای دیزل بعد از تونل رقیق سازی به صورت عددی می باشد. تونل رقیق سازی به منظور رقیق کردن گاز خروجی با هدف قابل اندازه گیری کردن آلاینده های آن توسط دستگاه های اندازه گیری به کار می رود. به دلیل وجود اختلاف دما میان گاز خروجی از تونل رقیق سازی و دیواره های لوله، نیروی ترموفورتیک علاوه بر دیگر نیروی های موثر بر ذرات موجب ته نشینی ذرات می شود. برای مدل سازی حرکت ذرات و به دست آوردن میزان ته نشینی ذرات از روش اویلری – لاگرانژی استفاده شده است. با توجه به اندازه ی ذرات خارج شده از اگزوز موتورهای دیزل (از 5 تا 500 نانومتر)، نیروهای پخش برانی، ترموفورتیک، جاذبه و برآ به طور کامل مورد بررسی قرار گرفتند. پس از انجام اعتبار سنجی نتایج، سهم اثرگذاری هر یک از این نیروها در گرادیان های دمای مختلف به دست آمد. نتایج نشان داد که با توجه به قطر ذرات مورد بررسی نیروی برانی مهم ترین نیرو است که می بایست همواره در نظر گرفته شود. نیروی ترموفورتیک حتی با وجود اختلاف دمای کم نیز برای تمامی قطرها اثرگذار بوده و قابل صرف نظر کردن نمی باشد. بیشترین اثر این نیرو برای ذرات با قطر 100 نانومتر می باشد. نیروی جاذبه اثر بسیار کمی داشته و عملا برای ذرات با قطر کمتر از 500 نانومتر تاثیر کمی دارد. نیروی برآ هم تنها اثر ناچیزی بر روی ذرات با قطر 500 نانومتر ایفا می کند. نتایج این تحقیق کمک شایانی به شناخت جریان دو فاز گازهای خروجی از اگزوز موتورها به ویژه پس از تونل رقیق سازی می کند.کلید واژگان: جریان دو فاز گاز - جامد, ذرات نانو, ته نشینی ذرات, لوله, جریان آرام توسعه یافتهThe aim of this paper was to study the thermophoresis effect on the deposition of nano-particles from diesel engine exhaust after the dilution tunnel using a computational modeling approach. Dilution tunnel was used in order to dilute the exhaust gas to the extend that was suitable for the measurement systems. The Lagrangian particle tracking method was used to model the dispersion and deposition of nano-particles. For the range of studied particle diameters (from 5 to 500 nm), the Brownian, thermophoresis, gravity and Saffman Lift forces are considered. After verifying the code, the importance of different forces was evaluated. Due to the temperature gradient between the exhaust gas and the pipe walls, particular attention was given to include the thermophoresis force in addition to the other forces acting on nano-particles. The results showed that for the range of nano-particle diameters studied, the Brownian force was the dominant force for particle deposition. Furthermore, the thermophoresis force was important even for relatively low temperature gradient and cannot be ignorable especially for larger particles. The maximum thermophoresis effect occurred for 100 nm particles. The gravity had negligible effects on nano-particle deposition and can be ignorable for particles with diameter less than 500 nm. The Saffman lift also had negligible effects and its effect was noticeable only for the deposition of 500 nm particles. The results of this paper could provide an understanding of two-phase flow emission from diesel engines especially after the dilution tunnel.Keywords: Gas, Solid two, phase flow, Nano, particles, Particle deposition, Laminar fully developed flow, Pipe flow
-
پدیده پخش و نشست ذرات نانو و میکرو در جریان آشفته در چند دهه گذشته مورد توجه قرار گرفته است. در این مقاله، پخش و نشست ذرات در جریان آشفته تراکم ناپذیر دوفازی گاز- ذره در داخل کانال دوبعدی دارای زبری مصنوعی (برجستگی های منظم) مستطیلی با استفاده از روش اویلری- لاگرانژی مورد بررسی قرار گرفته است. جریان فاز گاز با استفاده از مدل آشفتگی RSM با تابع بهبودیافته دیواره شبیه سازی شده است. اعتبارشبیه سازی جریان فاز گاز با مقایسه نتایج آن با داده های تجربی موجود برای جریان آشفته توسعه یافته در یک کانال نامتقارن بررسی شده است. ردیابی ذرات در فاز گسسته با استفاده از مدل لاگرانژی انجام شده است. معادله لاگرانژی حرکت ذره شامل نیروی درگ، نیروی گرانش، نیروی بالابر سافمن و نیروی براونی می باشد. اعتبارسنجی شبیه سازی حرکت ذرات با مقایسه بین نتایج حاضر با معادلات تجربی و نتایج معتبر قبلی برای حرکت ذرات داخل یک کانال دوبعدی صاف انجام شده است. نتایج شبیه سازی فاز گاز نشان می دهد که با افزایش ارتفاع زبری مصنوعی، گردابه های ایجاد شده در فضای بین دو زبری بزرگتر می شود. نتایج فاز ذرات نشان می دهد که مقادیر رسوب در کانال های دارای زبری مصنوعی، تابع دو عامل نیروی گرانش و الگوی جریان گاز در فضای بین دو زبری می باشد. مقادیر رسوب برای ذرات سبک، بیش تر تابع الگوی جریان در فضای بین دو زبری می باشد و با بزرگتر شدن ذرات، اثر الگوی جریان کمتر و اثر نیروی گرانش بیش تر می شود.
کلید واژگان: جریان دوفازی, زبری مصنوعی, نشست ذرات, مدل فاز گسستهPhenomenon of dispersion and deposition of nano- and micro-particles in turbulent flows been focused in the past decades. In this paper, particle dispersion and deposition in gas-particle two-phase turbulent flow inside a two-dimensional channel with rectangular artificial roughness is studied using an Eulerian–Lagrangian method. The RSM turbulence model with enhanced wall treatment was used to simulate the anisotropic turbulent gas phase flow. The gas phase flow predictions were validated by comparing the results with available experimental data for a fully developed asymmetric turbulent channel flow. In discrete phase, Lagrangian approach was applied for particle tracking. The Lagrangian equation of particle motion includes drag, gravity, Saffman lift, and Brownian forces. The particle phase simulation results were validated by comparing the present work with available equations and valid data for a gas particles turbulent flow inside a two-dimensional smooth channel. The gas phase simulation results show that by increasing the artificial roughness height, a recirculation region which is created in the space between two ribs, becomes larger. The particle phase results show that the rate of deposition in the channel with artificial roughness is a function of gravity force and flow pattern in the space between two ribs. The rate of deposition for small particle is affected significantly by gas flow pattern in the space between two ribs. However for large particles the gravity force is more dominant.
Keywords: Two, phase flow, Artificial Roughness, Particle deposition, Discrete Phase Model
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.