جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه probabilistic neural networks (pnns) در نشریات گروه فنی و مهندسی
probabilistic neural networks (pnns)
در نشریات گروه مکانیک
تکرار جستجوی کلیدواژه probabilistic neural networks (pnns) در مقالات مجلات علمی
-
پیش بینی از ابزارها و راهکارهای موثر به منظور برنامه ریزی و تدوین استراتژی های مالی است. دقت پیش بینی ها از مهمترین فاکتور های موثر در انتخاب روش پیش بینی است. امروزه علی رغم وجود روش های متعدد پیش بینی، هنوز پیش بینی های دقیق، به ویژه در بازارهای مالی کار چندان ساده ای نبوده و اکثر محققان درصدد به کارگیری و ترکیب روش های متفاوت به منظور حصول نتایج دقیق ترند. ترکیب مدل های مختلف یا استفاده از مدل های ترکیبی یک راه معمول در غلبه بر محدودیت های روش های تکی و بهبود عملکرد آنهاست. در ادبیات موضوع، روش های ترکیبی متعددی بر اساس مدل های پرسپترون های چندلایه و به منظور رفع نقایص و محدودیت های موجود در این گونه از روش ها طراحی و به کارگرفته شده اند. دراین مقاله، یک روش ترکیبی جدید از پرسپترون های چندلایه با استفاده از شبکه های عصبی احتمالی ارائه شده است. روش پیشنهادی با به کارگیری قابلیت های منحصر به فرد شبکه های عصبی احتمالی در تشخیص نقاط شکست، تغییرات و الگوهای خاص موجود در سری های زمانی مورد مطالعه را بهتر و کامل تر مدل سازی کرده و لذا عملکرد و دقت مدل در پیش بینی سری های زمانی را افزایش می دهد. نتایج حاصله از بکارگیری روش ترکیبی پیشنهادی به منظور پیش بینی نرخ ارز بیانگر کارامدی روش پیشنهادی در افزایش دقت پیش بینی ها بوده است.
Forecasting is one of the effective tools for planning and establishing the financial strategies. Forecasting accuracy is also one of the most important factors in choosing the forecasting method. Nowadays, despite the numerous forecasting models available, accurate forecasting is not yet a simple task, especially in financial markets. Thus, different models have been combined together in order to achieve more accurate results. Combining different models or using hybrid forecasting models is a common way for overcoming deficiecies of the single models and improving their performance. In the literature, several hybrid models of multilayer perceptrons have been proposed in order to overcome the disadvantages of these models. In this paper, a new hybrid model of multilayer perceptrons is proposed using probabilistic neural classifiers. The proposed model improves the performance of the multilayer perceptrons using the unique advantages of the probabilistic neural classifiers in detecting the break points and better and more complete modeling of the specific patterns in the under-study time series. Empirical results of exchange rate forecasting indicate the efficiency of the proposed model in comparison with other models.Keywords: Multilayer perceptrons (MLPs), Probabilistic Neural Networks (PNNs), Hybrid models, Time series forecasting, Financial markets, Exchange rate -
مدل های میانگین متحرک خودرگرسیون انباشته فازی (FARIMA) از جمله مدل های بهبودیافته مدل های میانگین متحرک خودرگرسیون انباشته کلاسیک (ARIMA) اند که به منظور مرتفع ساختن محدودیت تعداد داده های مورد نیاز این گونه از مدل ها ارائه شده اند. در این مقاله، به منظور حصول نتایج دقیقتر در شرایط داده های قابل حصول کم، یک مدل ترکیبی از مدل های میانگین متحرک خودرگرسیون انباشته فازی با طبقه بندی کننده های احتمالی، ارائه شده است. نتایج حاصله از بکارگیری روش ترکیبی پیشنهادی در بازارهای ارز (پوند انگلستان، دلار امریکا و یورو همگی در مقابل ریال ایران) بیانگر کارآمدی روش پیشنهادی است، لذا مدل مذکور قابلیت بکارگیری بعنوان ابزار و جایگزینی مناسب برای پیش بینی نرخ ارز، بویژه مواقعی که با داده های اندک سروکار داریم، را دارد.
Fuzzy autoregressive integrated moving average models are improved versions of the classic autoregressive integrated moving average (ARIMA) models, proposed in order to overcome the data limitation of ARIMA models. In this paper,FARIMA models are combined with probabilistic classifiers in order to yield a more accurate model than FARIMA in financially incomplete data situations. Empirical results of using proposed hybrid model in exchange rate market forecasting indicate that the proposed model exhibits effectively improved forecasting accuracy. Thus, the proposed model can be used as an alternative to exchange rate forecasting tools, especially when the scant data is made available over a short span of time.Keywords: Fuzzy autoregressive integrated moving average (FARIMA), Artificial neural networks (ANNs), Probabilistic neural networks (PNNs), Time series forecasting, Exchange rate
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.