جستجوی مقالات مرتبط با کلیدواژه "resonant frequency" در نشریات گروه "مکانیک"
تکرار جستجوی کلیدواژه «resonant frequency» در نشریات گروه «فنی و مهندسی»-
به دلیل گرمایش آیرودینامیکی، دمای پوسته ی هواپیما و موشک به مقدار قابل ملاحظه ای افزایش می یابد که باعث کاهش عملکرد پرواز در اثر ارتعاشات اجباری می شود. آلیاژهای حافظه دار به علت ویژگی های ترمومکانیکی از جمله تولید نیرو و بازیابی کرنش های بزرگ با اعمال گرما، می توانند جهت رفع این مشکل مورد استفاده قرار گیرند. در این پژوهش، پاسخ ارتعاشات اجباری پوسته های استوانه ای کامپوزیتی تقویت شده با الیاف حافظه دار نایتینول بررسی شده است. تغییرات تنش بازیابی و مدول یانگ با دما در الیاف حافظه دار با استفاده از مدل برینسون محاسبه شده است. معادلات حرکت بر اساس نظریه کلاسیک پوسته با استفاده از روابط کرنش-جابجایی غیرخطی هندسی ون-کارمن با تقریب اول لاو به کمک اصل همیلتون استخراج شده است. برای حل معادلات از روش مربعات تفاضلی تعمیم یافته در جهت طول استفاده شده است. اثر پیش کرنش و کسر حجمی الیاف حافظه دار بر پاسخ ارتعاشات اجباری پوسته های استوانه ای کامپوزیتی تقویت شده با الیاف حافظه دار تحت تاثیر تغییرات دما برای شرایط مرزی مختلف بررسی شده است. نتایج عددی نشان می دهد، استفاده مناسب از الیاف حافظه دار دارای پیش کرنش باعث افزایش فرکانس تشدید و کاهش دامنه ارتعاشات اجباری می شود.
کلید واژگان: ارتعاشات اجباری, پوسته های استوانه ای کامپوزیتی هیبریدی, آلیاژهای حافظه دار, مدل ساختاری برینسون, روش مربعات تفاضلی تعمیم یافته, فرکانس تشدیدDue to aerodynamic heating, temperature of aircrafts and rockets skin increases significantly, leading to reduced flight performance due to forced vibration. Shape Memory Alloys (SMAs) can be used to solve this problem due to their thermo-mechanical properties such as generating force and recovering large strains when exposed to heat. In this study, response of forced vibration in composite cylindrical shells reinforced with Nitinol SMA fibers is investigated. Variation in recovery stress and Young's modulus with temperature in SMA fibers is modeled using the Brinson's constitutive model. Equations of motion are derived based on the classical shell theory using the von Kármán nonlinear geometric strain-displacement relations with the Love's first approximation, applying Hamilton's principle. The governing equations are solved using the generalized differential quadrature method in the longitudinal direction. The effect of pre-strain and volume fraction of SMA fibers on the response of forced vibration in composite cylindrical shells reinforced with SMA fibers are investigated under varying temperatures and different boundary conditions. Numerical results indicate that appropriate use of pre-strained SMA fibers leads to an increase in the resonant frequency and a reduction in the amplitude of forced vibration.
Keywords: Forced Vibration, Hybrid Laminated Composite Cylindrical Shells, Shape Memory Alloys, Brinson Constitutive Model, Generalized Differential Quadrature Method, Resonant Frequency -
Piezoelectric cantilevers are mostly used for vibration energy harvesting. Changing the shape of the cantilevers could affect the generated output power and voltage. In this work, vibration energy harvesting via piezoelectric resonant unimorph cantilevers is considered. Moreover, a new design to obtain more wideband piezoelectric energy harvester is suggested. This study also provides a comprehensive analysis of the output voltage relationships and deducing an essential precise rule of thumb to calculate resonance frequency in cantilever-type unimorph piezoelectric energy harvesters using the Rayleigh-Ritz method. The analytical formula is then analyzed and verified by experiment on a fabricated prototype. The analytical data was found in an agreement with the experimental results. An important finding is that among all the unimorph tapered cantilever beams with uniform thickness, the triangular cantilever, can lead to highest resonance frequency and by increasing the ratio of the trapezoidal bases, the resonance frequency decreases. It is concluded that the shape can have a significant effect on the output voltage and therefore maximum output power density. Some triangular cantilever energy harvesters can arrange in pizza form using cantilever arrays. This arrangement decreases the occupied space and can lead to increasing the power density and also operating bandwidth.Keywords: Vibration Energy Harvesting, Resonant Frequency, Cantilever Arrays, Wideband Operation, Power Density
-
The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectric resonant unimorph cantilevers is studied and new design for obtaining more efficient piezoelectric energy harvester is suggested. This study provides comprehensive analysis of the output voltage relationships and deducing a considerable precise rule of thumb for calculating resonance frequency in cantilever-type unimorph piezoelectric energy harvesters using Rayleigh method. The analytical formula, is then analyzed and verified by FEM simulation in ABAQUS. The analytical data was found to be very close to simulation data. A key finding is that among all the unimorph trapezoidal V-shaped cantilever beams with uniform thickness, the triangular tapered cantilever, can lead to highest resonance frequency and by increasing the ratio of the trapezoidal bases, the resonance frequency decreases. These new findings provide guidelines on system parameters that can be manipulated for more efficient performance in different ambient source conditions.Keywords: Vibration energy harvesting, Unimorph Piezoelectric vibrator, Trapezoidal V-shaped cantilever, Triangular beam, Resonant frequency
-
The concept of energy harvesting is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibration energy for self-powered devices. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise analytical formula for calculating the fundamental resonant frequency of bimorph V-shaped cantilevers using Rayleigh method. This analytical formula, which is convenient for mechanical energy harvester design based on Piezoelectric effect, is then validated by ABAQUS simulation. This formula raises a new perspective that, among all the bimorph V-shaped cantilevers and in comparison with rectangular one, the simplest tapered cantilever beam can lead to maximum resonant frequency and highest sensitivity. The derived formula can be commonly used as a relatively precise rule of thumb in such systems.Keywords: Mechanical energy harvester, Piezoelectric, Bimorph V, shaped cantilever, Resonant frequency, Triangular shape
-
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise analytical formula for calculating the fundamental resonant frequency of V-shaped cantilevers using Rayleigh-Ritz method. This analytical formula, which is very convenient for mechanical energy harvester design based on Piezoelectric effect, is then validated by ABAQUS simulation. This formula raises a new perspective that, among all the V-shaped cantilevers and in comparison with rectangular one, the simplest tapered cantilever can lead to maximum resonant frequency and highest sensitivity.Keywords: Mechanical energy harvester, Piezoelectric, V, shaped cantilever, Resonant frequency, Finite element.
-
International Journal of Advanced Design and Manufacturing Technology, Volume:8 Issue: 4, Dec 2015, P 75The main aim of the vibration energy harvesters is to locally power autonomous devices such as wireless sensors. Generally, power levels are low and the environmental benefit of the technology is to replace batteries rather than saving energy per se. Piezoelectric vibrational energy harvesters are usually inertial mass based devices, where a cantilever beam with a piezoelectric outer layer is excited into resonance by a mechanical vibration source at the root of the cantilever beam. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise analytical formula for calculating the fundamental resonant frequency of unimorph V-shaped cantilevers using Rayleigh-Ritz method. This analytical formula, which is convenient for mechanical energy harvester design based on piezoelectric effect, is then validated by ABAQUS simulation. This formula raises a new perspective that, among all the unimorph V-shaped cantilever beams and in comparison with rectangular one (the simplest tapered cantilever), can lead to the highest resonant frequency and maximum sensitivity.Keywords: Mechanical Energy harvester, Piezoelectric, Unimorph V, shaped Cantilever, Resonant frequency, Finite Element
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.