به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « womersley number » در نشریات گروه « مکانیک »

تکرار جستجوی کلیدواژه «womersley number» در نشریات گروه «فنی و مهندسی»
  • M. Shumal, M. Saghafian *, E. Shirani, M. Nili-Ahmadabadi
    Murray’s law, as the best-known optimal relationship between bifurcation calibers, is obtained based on the assumption of steady-state Poiseuille blood flow and is mostly accurate in small vessels. In middle sized and large vessels such as the aorta and coronary arteries, the pulsatile nature of the flow is dominant and deviations from Murray law have been observed. In the present study, a general scaling law is proposed, which describes the optimum relationship between the characteristics of bifurcations and pulsatile flow. This scaling law takes into account the deviations from Murray law in large vessels, and proposes optimal flow (i.e. less flow resistance) for the full range of the vascular system, from the small vessels to large ones such aorta. As a general scaling law, it covers both symmetrical and asymmetrical bifurcations. One of the merits of this scaling law is that bifurcation characteristics solely depend on the Womersley number of parent vessels. The diameter ratios suggested by this scaling law are in acceptable agreement with available clinical morphometric data such as those reported for coronary arteries and aortoiliac bifurcations. A numerical simulation of pulsatile flow for several Womersley numbers in bifurcation models according to the proposed scaling law and Murray law has been performed, which suggests that the general scaling law provides less flow resistance and more efficiency than Murray law in pulsatile flow.
    Keywords: Pulsatile Flow, Womersley Number, Murray Law, Vascular Tree, Scaling Law, Flow Resistance}
  • P. Barati, M. Saghafian *
    In a bifurcation including a mother artery and two daughter arteries, the energy drop is minimum, if, the cube of the radius of the mother artery equals the sum of the cube of the radii of daughter arteries. This is the expression of Murray’s law (or cubic law) assuming the flow is steady. In this paper, an extension of Murray’s law is investigated using the minimum energy hypothesis, totally analytical for pulsating flow. In addition to the two terms that Murray considered in his calculations, there is additional energy to move fluid toward and back in the pulsating flow. This additional energy is calculated and added to two other parts of energy in Murray’s analysis, and then optimized. The relationships for diameters and the angle between daughter arteries are extended. The effect of frequency and Womersley number have appeared as coefficients in the relations. According to the results, the most difference between Murray’s law for both diameters and the angle between daughter arteries, and the relationship derived in the present paper, occurs in Womersley number between 2 and 5. For a special case which in the daughter arteries have the same diameter, the power of diameters varies up from 3 to 3.2. Also, for this special case, there is maximum 6 degrees difference with Murray’s law for the angle between daughter arteries. In short, the obtained relations, assuming pulsating flow, do not yield very different results from Murray's law assuming steady flow.
    Keywords: cubic law, minimum energy hypothesis, arterial junctions, oscillatory flow, Womersley number, Optimization}
  • Anek. V. Pillai, K. V. Manu*

    In this paper analytical expressions for time-dependent velocity profiles and pressure gradient are obtained for fully-developed laminar flows with given volume flow-rate conditions in circular pipe flows with slip boundary conditions. The governing equations are solved analytically using the traditional Laplace transform method together with Mellin’s inversion formula. The evolution of velocity profiles and pressure gradient for starting and pulsatile flow with slip boundary conditions are analyzed. New simplified expressions and perspectives on velocity and pressure gradient for no-slip and slip flows are obtained from the analytical results. New scalings in starting and pulsatile flows are proposed for pipe flows with no-slip and slip boundary conditions using nondimensional numbers. Special attention is paid to the effect of slip factor and pulsatile flow frequency on the time-dependent skin-friction factor. Finally, by using the starting and pulsating flow results, analytical expressions of velocity and pressure for arbitrary inflow are obtained by approximating the arbitrary volume flow-rate by a Fourier series

    Keywords: Micropipe, Starting flow, Pulsatile flow, Womersley number}
  • شبیه سازی عددی به منظور بررسی انتقال گرمای مزدوج و ضریب اصطکاک در جریان های ضربانی
    امین کاردگر، علی جعفریان دهکردی *
    انتقال گرمای مزدوج جریان ضربانی در سردساز لوله ضربانی با استفاده از روش های عددی شبیه سازی شده است. برای حل جریان در لوله از معادلات نویر-استوکس و برای حل میدان دما از معادلات انرژی سیال و جامد به صورت کوپل استفاده شده است. در مقاله حاضر تاثیر ضخامت دیواره جامد، نسبت رسانایی گرمایی جامد به سیال، عدد وومرزلی، دامنه نوسان بی بعد، رینولدز و پرانتل در انتقال گرما مزدوج در جریان های ضربانی مورد بررسی قرار گرفته است. نتایج شبیه سازی نشان می دهد با افزایش نسبت ضخامت دیواره به شعاع از δ /Ri=0. 13 تا δ /Ri=1. 0 مقدار عدد ناسلت 14% افزایش می یابد. برای دامنه نوسان های بی بعد کمتر از یک، ناسلت جریان نوسانی کمتر از جریان پایای یک طرفه است ولی برای دامنه نوسان های بی بعد بزرگتر از یک مقدار ناسلت جریان ضربانی از جریان پایای یک طرفه بیشتر بوده و با افزایش دامنه نوسان افزایش می یابد. نسبت ضریب اصطکاک در جریان های ضربانی به جریان پایای یک طرفه بیشتر از یک بوده و مقدار این نسبت در دامنه نوسان های بی بعد بزرگتر از یک به شدت افزایش می یابد. افزایش وورمزلی برای دامنه نوسان بی بعد کمتر از یک سبب کاهش ناسلت می شود در حالی که برای دامنه نوسان های بی بعد بزرگتر از یک، مقدار بهینه ای وجود دارد که برای دامنه نوسان 4/1، 4/2 و 3 مقدار بهینه آن تقریبا 20 است.
    کلید واژگان: جریان ضربانی, انتقال گرمای مزدوج, ضریت اصطکاک, نسبت رسانایی گرمایی جامد به سیال, عدد وومرزلی}
    Numerical Investigation of Friction Coefficient and Conjugate Heat Transfer in Pulsating Flows
    A. Kardgar, A. Jafarian *
    Conjugate heat transfer in a pulse tube is simulated numerically. Navier-Stokes equations are used for flow simulation and coupled fluid and solid energy equations are used for solving temperature domain in the tube. In the present paper, wall thickness, solid to fluid conductivity ratio, Womersley number, pulsating amplitude, Reynolds and Prandtl numbers have been considered to conduct a parametric study. By increasing wall thickness ratio from δ/Ri=0.13 to δ/Ri=1.0, Nusselt number increases almost %14. Results showed that pulsating flow Nusselt number is less than that of steady unidirectional flow for non-dimensional pulsating amplitude of less than one; however, it is higher than steady unidirectional Nusselt number for non-dimensional pulsating amplitude of more than one. The ratio of friction coefficient of pulsating to steady unidirectional flow is higher than one and it rises rapidly with increasing the pulsating amplitude. Nusselt number is reduced by increasing Womersley number for pulsating non-dimensional amplitude of less than one; however there is an optimum for pulsating amplitude of more than one which is 20 for pulsating amplitudes of 1.4, 2.4 and 3.
    Keywords: Pulsating flows, Conjugate heat transfer, Friction coefficient, Heat conduction ratio, Womersley number}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال