به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « CPFD » در نشریات گروه « مکانیک »

تکرار جستجوی کلیدواژه «CPFD» در نشریات گروه «فنی و مهندسی»
  • Q. X. Xiong, L. Zheng *
    Computational particle fluid dynamics method is utilized to study the influence of polydisperse and monodisperse particle size distribution, fuel addition, and biomass mixing ratio on the gas-solid flow behavior in a pilot-scale circulating fluidized bed (CFB). Numerical results show that a polydisperse system with different particle sizes can enhance the fluidization quality and the uniformity of the particle volume fraction in comparison with a monodisperse system with uniform particle sizes. When fuel is present in the CFB, the disturbance at the circulation inlet is eliminated and the particle aggregation effect at the wall is reduced. Furthermore, the particle volume fraction, pressure, and particle velocity distributions change only slightly as the biomass increased from 0% to 20% or from 50% to 100% of the total fuel mass. However, as the biomass ratio increases from 20% to 50%, the pressure drop in the riser decreases and the back-mixing degree at the riser wall weakens.
    Keywords: CPFD, Hydrodynamics, Circulating Fluidized Bed, Particle Size Distribution, Multiple Particles Mixing}
  • H. P. Liu *, Y. Bi, H. W. Sun, L. Zhang, F. Yang, Q. Wang
    Aggregation of fluidization media may appear at the dense phase region of the pant-leg fluidized bed near the incline walls. When the particles flow along the inclined wall, the friction and drag force will cause the particles to accumulate on the inclined wall, resulting in an uneven distribution of particles. The stagnant zones can be minimized by correctly arranging secondary air. Computational particle fluid dynamics (CPFD) method was used to simulate the gas-solid two-phase flow pattern in the dense phase region of pant-leg fluidized bed. Cold tests were performed on a benchtop pant-leg fluidized bed. A high speed imaging technology was used to monitor the flow pattern in the dense phase area, whereas the bubble size and residence time were compared to verify the accuracy of the simulation. The gas-solid flow patterns under various models were simulated. The influence of different secondary air velocities on the reduction of stagnant zone in the dense phase zone of the fluidized bed were predicted. The results indicated that the introduction of secondary air could effectively promote the mixing of particles, and weaken the accumulation of particles on the inclined wall surface. Moreover, secondary air can effectively promote the flow between the gas-solid two-phases and improve the combustion characteristics in the furnace.
    Keywords: Fluidized bed, Dense phase zone, Gas-solid flow, Numerical simulation, Secondary air, CPFD}
  • D. Gündüz Raheem*, B.Yılmaz, S. Özdoğan

    A 30 kWth Circulating fluidized bed (CFB) combustor is experimentally and numerically investigated under cold flow conditions. Barracuda software based on Computational Particle Fluid Dynamics (CPFD) method is utilized for simulations. The influences of bed inventory and drag model on flow hydrodynamics were investigated considering pressure and velocity profiles and particle concentration. Two advanced drag models, namely Energy minimization multi-scale (EMMS) and Wen-Yu/Ergun were selected for this study. The simulations were performed with initial bed material masses of 3.79, 4.55 and 5.20 kg corresponding to 2.5, 3 and 3.5 diameters height of riser, respectively. With increasing bed inventory pressure drops and solid concentration increase. The axial particle velocities slightly change with bed inventory. The comparison of simulation results with experimental measurements was resulted in good agreement (<5%) with both models. The simulation with EMMS drag model predicted the pressure profiles more accurately than Wen-Yu/Ergun drag model. The profiles of particle volume fraction and axial velocity demonstrate that core-annulus flow pattern was captured by both models. But EMMS drag model was better in revealing the meso-scale structures at instantaneous particle concentration distribution. Moreover, the influence of particle size distribution on particle volume fraction and particle velocity profiles is also investigated with two drag models.

    Keywords: CFB, Experimental, Cold flow, CPFD, Drag model}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال