به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « Coupled system » در نشریات گروه « مکانیک »

تکرار جستجوی کلیدواژه « Coupled system » در نشریات گروه « فنی و مهندسی »
  • Saeed Amir *, AliReza Vossough, Hossein Vossough, Ehsan Arshid

    The aim of this article is to analyze nonlinear electro-magneto vibration of a double-piezoelectric composite microplate-system (DPCMPS) pursuant to the nonlocal piezoelasticity theory. The two microplates are assumed to be connected by an enclosing elastic medium, which is simulated by the Pasternak foundation. Both of piezoelectric composite microplates are made of poly-vinylidene fluoride (PVDF) reinforced by agglomerated carbon nanotubes (CNTs). The Mori-Tanaka model is employed to compute the mechanical properties of composite. Applying nonlinear strain-displacement relations and contemplating charge equation for coupling between electrical and mechanical fields, the motion equations are derived in consonance to the energy method and Hamilton's principle. These equations can't be solved analytically as a result of their nonlinear terms. Hence, the differential quadrature method (DQM) is employed to solve the governing differential equations for the case when all four ends are clamped supported and free electrical boundary conditions. The frequency ratio of DPCMPS is inspected for three typical vibrational states, namely, out-of-phase, in-phase and the case when one microplate is fixed in the DPCMPS. A detailed parametric study is conducted to scrutinize the influences of the small scale coefficient, stiffness of the internal elastic medium, the volume fraction of the CNTs, agglomeration and magnetic field. The results reveal that with increasing volume fraction of the CNTs, the frequency of the structure increases. This study might be beneficial for the design and smart control of nano/micro devices such as MEMS and NEMS.

    Keywords: Coupled system, Agglomerated CNTs, DQM, Piezoelectric, Magnetic field}
  • A. H. Ghorbanpour, Arani, A. Rastgoo, H. Vossough, R. Kolahchi, A. Ghorbanpour Arani
    The aim of the paper is to analyze electro-thermo nonlinear vibration of a double-piezoelectric composite microplate-system (DPCMPS) based on nonlocal piezoelasticity theory. The two microplates are assumed to be connected by an enclosing elastic medium which is simulated by Pasternak foundation. Both of smart composite microplates are made of poly-vinylidene fluoride (PVDF) reinforced by zigzag double walled boron nitride nanotubes (DWBNNTs). The micro-electromechanical model is employed to calculate mechanical, thermal and electrical properties of composite. Using nonlinear strain-displacement relations and considering charge equation for coupling between electrical and mechanical fields, the motion equations are derived based on energy method and Hamilton's principle. These equations cant be solved analytically due to their nonlinear terms. Hence, differential quadrature method (DQM) is employed to solve the governing differential equations for the case when all four ends are clamped supported and free electrical boundary condition. The frequency ratio of DPCMPS is investigated for three typical vibrational states, namely, out-of-phase, in-phase and the case when one microplate is fixed in the DPCMPS. A detailed parametric study is conducted to scrutinize the influences of the small scale coefficient, stiffness of the internal elastic medium, the volume fraction and orientation angle of the DWBNNTs reinforcement, temperature change and aspect ratio. The results indicate that with increasing geometrical aspect ratio, the effect of coupling elastic medium between two smart nanocomposite microplates reduces. This study might be useful for the design and smart control of nano/micro devices such as MEMS and NEMS.
    Keywords: Nonlinear vibration, Coupled system, Nonlocal piezoelasticity, DWBNNTs}
  • محمد هاشمیان
    در این تحقیق ارتعاشات دو نانو صفحه ی گرافنی کوپل شده به یکدیگر مورد بررسی قرار گرفته است. نانوصفحات توسط محیط الاستیک پاسترناک به یکدیگر مرتبط شده اند. از تئوری های ورق کلاسیک و میندلین برای مدل سازی نانوصفحات استفاده شده است. بر روی نانوصفحه ی بالایی جرمی قرار دارد. روابط حاکم بر اساس روش انرژی و اصل همیلتون بدست آمده و با در نظر گرفتن تئوری های اثرات تنش سطح و ارینگن، بصورت غیرموضعی بیان شده اند. با استفاده از روش گالرکین نمودارهای فرکانس بر اساس پارامتر مقیاس کوچک رسم شده و تاثیر پارامترهایی چون جرم متحرک، اثرات سطح و... بحث شده اند. نتایج نشان می دهند که با در نظر گرفتن اثرات سطح، فرکانس سیستم افزایش می یابد، همچنین اجرام سنگین تر دور از تکیه گاه ها، کاهش فرکانس را در بر دارند.
    [1]Double-Graphene Sheet-System [2]Classic plate theory [3] Mindlin plate theory [4] Surface stress effects
    کلید واژگان: ارتعاشات, صفحه گرافنی, تئوری کلاسیک, تئوری میندلین, اثرات سطح, سیستم کوپله}
    M. Hashemian
    Vibration of double-graphene sheet-system is considered in this study. Graphene sheets are coupled by Pasternak elastic medium. Classic and Mindlin plate theories are utilized for modeling the coupled system. Upper sheet carries a moving mass. Governing equations are derived using energy method and Hamilton’s principle considering surface stress effects and nonlocal parameter. Using Galerkin method, figures of frequency versus nonlocal parameter are drawn and the effects of different parameters such as moving mass, surface effects and etc. are discussed. Results show considering surface effects, the frequency of coupled system increases. Also heavier mass and farther mass away from supports will result in lower frequencies.
    Keywords: Vibration, Graphene sheet, Classic theory, Mindlin theory, Surface effect, Coupled system}
  • A. Ghorbanpour Arani*, S. Amir
    In the present study, nonlinear vibration of coupled carbon nanotubes (CNTs) in presence of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory. CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal magnetic field. Using von Kármán geometric nonlinearity and Hamilton’s principle, the nonlinear higher order governing equations are derived. The differential quadrature (DQ) method is applied to obtain the nonlocal frequency of coupled visco-CNTs system. The effects of various parameters such as the longitudinal magnetic field, visco-Pasternak foundation, Knudsen number, surface effect, aspect ratio and velocity of conveying viscous are specified. It is shown that the longitudinal magnetic field is responsible for an up shift in the frequency and an improvement of the instability of coupled system. Results also reveal that the surface effect and internal conveying fluid plays an important role in the instability of nano coupled system. Also, it is found that trend of figures have good agreement with previous researches. It is hoped that the nonlinear results of this work could be used in design and manufacturing of nano/micro mechanical system in advanced nanomechanics applications where in this study the magnetic field is a controller parameter.
    Keywords: Nonlinear vibration, Coupled system, Magnetic field, Conveying fluid, Surface stress, Knudsen number}
  • A. Ghorbanpour Arani, S. Amir
    In this work, nonlocal vibration of double of carbon nanotubes (CNTs) system conveying fluid coupled by visco-Pasternak medium is carried out based on nonlocal elasticity theory where CNTs are placed in uniform temperature change and magnetic field. Considering Euler-Bernoulli beam (EBB) model and Knudsen number, the governing equations of motion are discretized and Ritz method is applied to obtain the frequency of coupled CNTs system. The detailed parametric study is conducted, focusing on the remarkable effects of the Knudsen number, aspect ratio, small scale, thermo-magnetic fields, velocity of conveying fluid and visco-Pasternak medium on the stability of coupled system. The resultsindicate that magnetic field has significant effect on stability of coupled system. Also, it is found that trend of figures have good agreement with the previous researches. Results of this investigation could be applied for optimum design of nano/micro mechanical devices for controlling stability of coupled systems conveying fluid under thermo-magnetic fields.
    Keywords: Vibration, Coupled system, Conveying fluid, Knudsen number, Magnetic field, Visco, Pasternak medium}
  • A. Ghorbanpour Arani *, R. Kolahchi, H. Vossough, M. Abdollahian
    This study deals with the vibration and stability analysis of double-graphene nanoribbon-system (DGNRS) based on different nonlocal elasticity theories such as Eringen''s nonlocal, strain gradient, and modified couple stress within the framework of Rayleigh beam theory. In this system, two graphene nanoribbons (GNRs) are bonded by Pasternak medium which characterized by Winkler modulus and shear modulus. An analytical approach is utilized to determine the frequency and critical buckling load of the coupled system. The three vibrational states including out-of-phase vibration, in-phase vibration and one GNR being stationary are discussed. A detailed parametric study is conducted to elucidate the influences of the small scale coefficients, stiffness of the internal elastic medium, mode number and axial load on the vibration of the DGNRS. The results reveal that the dimensionless frequency and critical buckling load obtained by the strain gradient theory is higher than the Eringen''s and modified couple stress theories. Moreover, the small scale effect in the case of in-phase vibration is higher than that in the other cases. This study might be useful for the design of nano-devices in which GNRs act as basic elements.
    Keywords: GNR, Strain gradient theory, Rayleigh beam theory, Coupled system, Modified couple stress theory}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال