به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "مدل آمیخته گوسی" در نشریات گروه "مهندسی شیمی، نفت و پلیمر"

تکرار جستجوی کلیدواژه «مدل آمیخته گوسی» در نشریات گروه «فنی و مهندسی»
جستجوی مدل آمیخته گوسی در مقالات مجلات علمی
  • حمید قالیباف محمدآبادی، ناصر حافظی مقدس*، غلامرضا لشکری پور، رئوف غلامی، حسین طالبی

    در این تحقیق از روش یادگیری بدون نظارت جهت تعیین واحد های ژیومکانیکی در یکی از چاه های نفتی جنوب ایران با استفاده از لاگ های داده های چاه نگاری شامل نگاره گاما طبیعی (SGR) ، نگاره گاما اصلاح شده (CGR)، چگالی (RHOB)، تخلخل نوترونی (NPHI)، زمان موج برشی (DTSM) و زمان موج طولی (DTCO) استفاده شده است. برنامه نویسی مورد نیاز در محیط پایتون انجام گرفته است. در این راستا ابتدا بعد از پردازش داده های چاه نگاری از دو الگوریتم محبوب قدرتمند نظارت شده یادگیری ماشین ایکس جی بوست (XGBoost) و شبکه عصبی پرسپترون چند لایه (Multi-Layer Perceptron Neural Network) جهت بازیابی داده های گمشده استفاده گردید. سپس از روش های بدون نظارت یادگیری ماشین شامل مدل k- میانگین (K-Means Clustering)، الگوریتم خوشه بندی سلسله مراتبی (HAC)، الگوریتم خوشه بندی DBSCAN مبتنی بر غلظت، و مدل آمیخته گوسی (Gaussian Mixture Modelling) جهت تعیین واحد های ژیومکانیکی مخزنی پر فشار، آهکهای نارک لایه و غیرمخزنی مسیله دار استفاده شد. در این روش ها الگوریتم ها خود الگوهای زیر سطحی را با استفاده از داده ها شناسایی می کنند که ممکن است به راحتی در طول کاوش داده قابل مشاهده نباشند. معیار ارزیابی دقت روش دقت در شناسایی آهک های نازک لایه، سازندهای غیر مخزنی مسیله دار و افق های پر فشار سازند های مورد مطالعه در نظر گرفته شد. نتایج مطالعات نشان داد که از بین روش های مورد مطالعه روش GMM به جای اینکه بر اساس فاصله باشد، مبتنی بر توزیع است و از مرزهای خوشه/تصمیم بیضی استفاده می کند. بنابراین، منجر به طبقه بندی نرم تری می شود. علاوه براین، بخاطر قرار دادن الگوهای احتمالاتی مختلف برای شناسایی واحد های ژیومکانیکی، روشی بهتر جهت تعیین واحدهای مخزنی پر فشار ایلام، سروک و آهکهای نازک لایه می باشد.

    کلید واژگان: الگوریتم های یادگیری ماشین, یادگیری بدون نظارت, یادگیری نظارت شده, مدل - k میانگین, مدل آمیخته گوسی, الگوریتم(XGBoost), الگوریتم (Multi-Layer Perceptron Neural Network)
    Hamid Ghalibaf Mohammad Abadi, Naser Hafezi Moghaddas *, GholamReza Lashkaripour, Raoof Gholami, Hossin Talebi

    Machine Learning algorithms have widely been adopted to group well log measurements into distinguished lithological groupings, known as Facies/Geomechanical units. This procedure can be achieved using either unsupervised learning or supervised learning algorithms. Supervised learning is the most common and practical of machine learning tasks and it is designed to learn from the example using input data that has been mapped to the correct output. In this research, we can run the modeling using Unsupervised Learning, where we authorize the algorithms to recognize underlying patterns within the data that may not be easily visible during data exploration. Therefore, an unsupervised learning method has been used to determine geomechanical zones. In this method, we give one's consent/assent to algorithms to identify subsurface patterns using data that may not be easily visible during data exploration. First, the application of practical methods of machine learning algorithms, including the K-mean model, Based Spatial Clustering of Applications with Noise (DBSCAN), Hierarchical Agglomerative Clustering (HAC), and Gaussian mixed model, will be explained, And then in this research, the best method for predicting petrophysical layers will be presented and compared the results with an established Lithofacies curve. The required programming is done in a Python environment. In this regard, after well processing, The XGBoost and Multi-Layer Perceptron Neural Network Algorithms have been used to predict the missing data. The optimal number of clusters is obtained using an ‘elbow’, In this article, as the title suggests, Four methods are used in cluster analysis unsupervised machine learning algorithms, but in petrophysical, geological, and geomechanical realities, data seldom conform to good circle patterns. Whereas if the data clusters are circular, K-Means clustering and Hierarchical Agglomerative Clustering( HAC) work great. Therefore, it is better to use the Gaussian mixed models (GMM) method.

    Keywords: Machine Learning, Supervised machine learning, Unsupervised Machine Learning, K Means Clustering Modelling, Gaussian Mixture Modelling, XGBoost Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال