جستجوی مقالات مرتبط با کلیدواژه "energy" در نشریات گروه "مهندسی شیمی، نفت و پلیمر"
تکرار جستجوی کلیدواژه «energy» در نشریات گروه «فنی و مهندسی»-
Prospects and challenges for the production and use of green hydrogen as a promising energy in LibyaThe world's ever-increasing energy demand has led to the diversification of energy sources, especially renewable energy. Libya is currently entirely dependent on non-renewable energy sources. Therefore, the presence of a clean and renewable energy source has become one of its foundations for sustainable development. It is, therefore, necessary to search for an alternative energy source to oil and gas, the only energy source in Libya. This study examines the challenges and prospects of the potential of green hydrogen production in Libya and its use for future implementation. It also provides an overview of the benefits of switching to green hydrogen technology. Green hydrogen production will offer an alternative energy source in Libya. It will be a better alternative to the currently available energy sources as it is a sustainable and environmentally friendly energy. The study confirms that Libya is one of the most promising countries for producing large quantities of green hydrogen for several reasons. The most important point is the availability of solar energy. Libya has high solar radiation (3,000 to 3,500 hours of sunshine per year), a hot and dry climate, and large uninhabited areas, 88% of which are covered by deserts. In addition, wind energy and thermal energy are potentially available in Libya. Furthermore, Libya is positioned strategically close to the European market.Keywords: Energy, Green Hydrogen, Renewable Energy, Solar Energy
-
Internal combustion engine energy and exergy analysis is essential when choosing a biofuel that can be used as an alternative to conventional diesel, as these analyses provide concerns about the quantity and quality of available energy. In this study, the multiple injection strategies (MIS) in an improved common rail direct injection (CRDI) diesel engine running on 20% blend of Congress grass Tamarind shell co-pyrolysis oil (CGTSCPO20) and diesel is optimized and energy and exergy analysis has been made at optimized condition. The optimal result reveals that there was a slight improvement in brake thermal efficiency (BTE) and reduction in emissions. By increasing the IOP from 600 bar to 1100 bar with the same fuel IT of 10 bTDC, the performance is enhanced. Studies reveal that, apart from nitrogen oxides (NOx), emissions decrease under ideal circumstances of 80% load and 1000 bar pressure when brake thermal efficiency (BTE) increases. From the experimental results, it was observed that destruction of exergy for CGTSCPO20 and diesel were 59.24% and 50.17%, respectively.Keywords: Energy, Exergy, Injection Timing, Emissions, Injection Duration, Optimization
-
This study investigates the influence of cereal dextrin on two kinetic parameters of methane hydrate formation. Methane hydrate, solid structure formed by gas and water molecules, are gaining attention for its energy potential and climate regulation. Overcoming challenges like high-pressure requirements, slow formation rates, and economic viability is crucial. The study introduces cereal dextrin as a biodegradable kinetic promoter. In order to explore the influence of cereal dextrin on the formation of gas hydrate, a series of experiments were conducted using a stirred batch cell with a total volume of 169 cm3. The temperature of the cell was carefully controlled at 275.15 K, while the initial pressure was set at 7.5 MPa. Results show dextrin positively influences water to hydrate conversion (WHC) and hydrate volume fraction (HVF). After 100 minutes of hydrate growth, 1% dextrin increases WHC by 150.5% and HVF by 127.8%. The findings suggest dextrin, at 1 wt%, is an optimal concentration for enhancing the kinetics of methane hydrate formation, offering potential applications in energy and environmental fields.Keywords: Cereal Dextrin, Clathrate Hydrates, Energy, Hydrate Volume Fraction
-
در این مطالعه عملکرد یک سامانه فتوولتاییک حرارتی خورشیدی بررسی شده است. مطالعه عددی با کدنویسی در نرم افزار متلب و با حل هم زمان معادلات مربوط به بخش الکتریکی و حرارتی انجام گرفته است که امکان انجام بررسی های مختلف برروی سامانه را فراهم می سازد. مطالعه عددی دارای سه بخش مطالعه مشخصه ای عوامل محیطی، عملکرد سامانه در یک روز و در یک سال است.با افزایش سرعت باد از صفر تا 14 متر بر ثانیه، بازده الکتریکی حدود 4% افزایش، بازده حرارتی حدود 22% کاهش و بازده کلی سامانه 18% کاهش می یابد؛ بنابراین امکان تغییرات شدیدی در عملکرد سامانه با تغییرات سرعت باد وجود دارد. با افزایش میزان تابش از 350 تا 1050 وات بر مترمربع بازده الکتریکی، حرارتی و بازده کلی به ترتیب 1% کاهش، 16% افزایش و 14 % افزایش را نشان می دهد. با فرض افزایش دمای محیط از 5 تا 60 درجه سلسیوس، بازده انرژی الکتریکی 5/2% کاهش، بازده حرارتی حدود 0.5% افزایش و بازده کلی حدود 2% کاهش می یابد. هم چنین، نتایج نشان می دهند که توان خروجی حرارتی سامانه فتوولتاییک حرارتی مورد بررسی بین 280 تا 460 وات و توان خروجی الکتریکی بین 120 تا 190 وات در طول سال تغییر می کند.کلید واژگان: انرژی خورشیدی, سامانه فتوولتائیک حرارتی, آنالیز انرژی و اگزرژیIn this work, the performance of a solar system, in more detail, the thermal photovoltaic system is investigated. Numerical study has been done through coding in MATLAB software and by simultaneously solving equations related to the electrical and thermal parts, which provides the possibility of performing various investigations on the system. It is noteworthy that the PV part of this code, which is entirely accurate, can also use independently for photovoltaic systems. Numerical study has three features: parametric study, and collector performance in one day and in one year. As the wind speed increases from zero to 14 m/s, the electrical efficiency increases by about 4%, the thermal efficiency decreases by about 22%, and the overall efficiency of the system decreases by 18%; Therefore, there is a possibility of drastic changes in the performance of the system with changes in wind speed. By increasing the amount of radiation from 350 to 1050 W/m2, the electrical, thermal and overall efficiency shows a 1% decrease, 16% increase and 14% increase, respectively. Assuming an increase in the ambient temperature from 5 to 60 oC, the electrical efficiency decreases by 2.5%, the thermal efficiency increases by 0.5% and the overall efficiency decreases by 2%. Also, the results show that the thermal output power of the photovoltaic thermal system varies between 280 and 460 Watts and the electrical output power varies between 120 and 190 Watts throughout the yearKeywords: Solar energy, Thermal Photovoltaic System, Energy, Exergy Analysis
-
در سال های اخیر بیماری کووید-19 به عنوان یک بیماری مسری با قدرت انتشار بالا اثرات بسیار مخربی بر جوامع انسانی داشته است. از این رو، بررسی نحوه انتشار و انتقال آن ضرورت دارد. هدف از پژوهش حاضر، تخمین احتمال انتقال ویروس کرونا و پیش بینی سرایت آن با استفاده از روش تصادفی زنجیره های مارکوف است. برای این منظور به مدل سازی انتشار ویروس کرونا در کشورهای فرانسه، انگلستان، آلمان، ایران و نیجریه پرداخته شده است. باتوجه به نتایج، بیشترین احتمال انتقال این ویروس مربوط به کشور فرانسه است که با گذشت زمان به سرعت کاهش یافته است. علاوه بر این، موارد ابتلای پیش بینی شده در سال 2021 برای کشورهای انگلیس، آلمان و ایران به ترتیب به اندازه 1.2، 1.8 و 0.7 درصد با مقادیر گزارش شده، اختلاف دارد. این نتایج بیانگر کارایی مدل پیشنهادی در پیش بینی تعداد افراد مبتلا به ویروس کروناست.کلید واژگان: همه گیرشناسی, کووید-19, احتمال انتقال, زنجیره مارکوفIn this work, the performance of a solar system, in more detail, the thermal photovoltaic system is investigated. Numerical study has been done through coding in MATLAB software and by simultaneously solving equations related to the electrical and thermal parts, which provides the possibility of performing various investigations on the system. It is noteworthy that the PV part of this code, which is entirely accurate, can also use independently for photovoltaic systems. Numerical study has three features: parametric study, and collector performance in one day and in one year. As the wind speed increases from zero to 14 m/s, the electrical efficiency increases by about 4%, the thermal efficiency decreases by about 22%, and the overall efficiency of the system decreases by 18%; Therefore, there is a possibility of drastic changes in the performance of the system with changes in wind speed. By increasing the amount of radiation from 350 to 1050 W/m2, the electrical, thermal and overall efficiency shows a 1% decrease, 16% increase and 14% increase, respectively. Assuming an increase in the ambient temperature from 5 to 60 oC, the electrical efficiency decreases by 2.5%, the thermal efficiency increases by 0.5% and the overall efficiency decreases by 2%. Also, the results show that the thermal output power of the photovoltaic thermal system varies between 280 and 460 Watts and the electrical output power varies between 120 and 190 Watts throughout the year.Keywords: Solar energy, Thermal Photovoltaic System, Energy, Exergy Analysis
-
مجله فرآیند نو، پیاپی 82 (تابستان 1402)، صص 53 -72
فلزات سنگین به دلیل سمیت، زیست تخریب ناپذیری و تجمع زیست محیطی آلاینده های محیطی فوق العاده مضری هستند که می توانند بر افراد و محیط تاثیر بگذارند. پیل های سوختی میکروبی نوعی رویکرد بیوالکتروشیمیایی است که در آن گونه های باکتریایی، آلاینده های آلی و یون های فلزی را از فاضلاب مصنوعی و صنعتی حذف می کنند و به طور همزمان برق تولید می کنند. در حال حاضر کاربردهای واقعی این دستگاه ها در جهان به دلیل سطح پایین دانسیته تولیدی محدود هست . با بررسی های انجام شده در این مقاله در سال های اخیر از پیل سوختی میکروبی به عنوان یکی از راه های حذف فلزات سنگین از پساب صنایع مورد استفاده قرار گرفته است که میزان حذف 10 تا 100 درصدی برای فلزاتی مانند طلا، کروم، مس، سرب، کادمیوم، جیوه، روی، آرسنیک و نیکل دست یافتند. همچنین پارامترهای موثر بر میزان حذف در این بررسی ها مورد ارزیابی قرار گرفت که شرایط بهینه در اکثر موارد در محدوده pH خنثی و در بعضی موارد در 2=pH، در دمای 22 تا 35 درجه سانتی گراد و مقاومت خارجی 200 تا 1000 اهم می باشند.
کلید واژگان: پیل سوختی میکروبی, حذف فلزات سنگین, پساب, انرژیHeavy metals are extremely harmful environmental pollutants due to their toxicity, non-biodegradability and environmental accumulation that can affect people and the environment. Microbial fuel cells are a type of bioelectrochemical approach in which bacterial species remove organic pollutants and metal ions from synthetic and industrial wastewater and simultaneously generate electricity. Currently, the real applications of these devices in the world are limited due to the low level of production density. According to the investigations carried out in this article in recent years, microbial fuel cells have been used as one of the ways to remove heavy metals from industrial effluents, and 10 to 100% removal rates were achieved for metals such as gold, chromium, copper, lead, cadmium, mercury, zinc, arsenic and nickel. Also, the parameters affecting the amount of removal were evaluated in these studies, and the optimal conditions are in most cases in the range of neutral pH and in some cases in pH=2, at a temperature of 22 to 35 0C and an external resistance of 200 to 1000 ohms.
Keywords: Microbial fuel cell, Removal of Heavy Metals, Wastewater, energy -
Hydrogen is the key to achieving sustainable and clean energy in the world's future, and research in the field of optimal hydrogen production has been growing in the past years. This research discusses the mathematical modeling of the Methanol Steam Reforming Process in membrane reactors to produce hydrogen. Modeling is developed with the principles of energy, mass, and momentum conservation; In cases where the temperature is constant, only the conservation of mass will be used, and both energy and mass equations will be used in non-isothermal cases. This modeling is finally upgraded from one-dimensional to two-dimensional in the length and radial of the reactor. In each mathematical model, molecular and thermal diffusion relations are used as auxiliary equations to complete the modeling. In the final step, the effect of different variables such as temperature, pressure, and the reactor and membrane's physical conditions is analyzed to determine the optimal operating conditions for the developed mathematical models. The predictability of chemical processes behavior like the methanol steam reforming process can be achieved through basic mathematical modeling concepts. The results from the conceptual examination of the mathematical model are compared with various simulation results carried out in other articles, revealing their consistency. Basic mathematical models are superior to complex simulations as they can be leveraged to develop intelligent expert systems or predictive maintenance programs that deliver desired outcomes rapidly and cost-effectively.
Keywords: Methanol steam reforming, mathematical modeling, Hydrogen production, Membrane reactors, Conservation of mass, energy, System analysis -
In this study, a novel multigeneration cycle including PTC and geothermal as the main energy sources and Kalina and ORC cycles as the main power production cycles have been proposed and analyzed from energy and exergy point of view. The effect of important parameters including solar irradiation, collector inlet temperature, collector volumetric flow, environment temperature, and geothermal temperature on the amount of the hydrogen production rate, freshwater production rate, and system efficiency have been investigated. The results show that the energy and exergy efficiency of the proposed system is 35.75 % and 18.39 %, respectively. Moreover, the total power produced by the system is obtained to be 1545 kW, the amount of hydrogen produced is 0.001175 g/s and the freshwater production rate is 5.216 kg/s. Furthermore, the results indicated that increasing geothermal temperature and solar collector inlet volumetric flow, increase hydrogen production rate and solar irradiation and environment temperature have no effects on the hydrogen production rate of the cycle. Finally, it is found that geothermal temperature increase and collector volumetric flow show an optimum point for thermal efficiency and freshwater, respectively.Keywords: Energy, exergy analysis, PTC, geothermal, PEM electrolyzer, Hydrogen production
-
خشک کردن یک فناوری متداول است که مدت نگهداری طولانی پس از برداشت را برای محصولاتی مانند طالبی فراهم می کند. خشک کردن هوای گرم روشی است که در صورت بهینه شدن شرایط، ظاهر بهتر و خواص بافتی بهبود یافته را به محصول می دهد. در این مطالعه، تغییرات مدت خشک کردن، انرژی مصرفی ویژه، بازده انرژی، چروکیدگی، ضریب بازجذب، تغییرات رنگ کل، محتوای فنل و آنتی اکسیدان برای بهینه سازی عوامل خشک کردن (دما و سرعت هوا) با استفاده از روش سطح پاسخ مدل سازی شدند. فرآیند خشک کردن نمونه ها در سه سطح دمای50، 60 و °C 70 و سه سطح سرعت 5/0، 1 و m/s 5/1 بررسی شد. نتایج نشان داد که در خشک کردن طالبی با استفاده از روش هوای گرم با افزایش دمای هوای ورودی و کاهش سرعت هوا، بازده انرژی، ضریب باز جذب، محتوای فنل کل و درصد آنتی اکسیدان افزایش یافت در حالیکه مدت خشک کردن، انرژی مصرفی ویژه، چروکیدگی و تغیرات رنگ کاهش پیدا کرد. نقطه بهینه برای خشک کردن نمونه های طالبی در دمای هوای °C 70 و سرعت هوای m/s 5/0 به دست آمد. نتایج نشان داد که خشک کردن در دماهای بالاتر سبب افزایش شاخص مطلوبیت مدل به دست آمده از روش سطح پاسخ می شود.کلید واژگان: طالبی, خشک کردن, انتی اکسیدان, رنگ, انرژیIntroductionDrying is a common technology that provides a long post-harvest storage period for products such as cantaloupe. Hot air drying is a method that, if the conditions are optimized, gives the product better appearance and improved textural properties. In this study, drying time, specific energy consumption, energy efficiency, shrinkage, rehydration ratio, changes in total color, phenol and antioxidant content were modeled to optimize drying factors (air temperature and air velocity) using the response surface method.Materials and methodsThe drying processes of the samples were investigated at three temperature levels of 50, 60 and 70 °C and three velocity levels 0.5, 1 and 1.5 m/s. For optimization of the drying conditions (drying time, SEC, energy efficiency, shrinkage, RR, color changes, TPC and AC), the influences of two levels of independent variables including air temperature and air velocity were assessed by response surface method through a face-centered central composite design.Results and discussionThe results showed that in the drying of cantaloupe using the hot air method by increasing the inlet air temperature and decreasing the air velocity, energy efficiency, rehydration ratio, total phenol content and antioxidant were increased, while drying time, specific energy consumption, shrinkage and color changes were reduced. The optimum point for drying cantaloupe samples was obtained at an air temperature of 70 °C and air velocity of 0.5 m/s. The results showed that drying at higher temperatures increases the desirability index of the model obtained from the response surface method.ConclusionsThe authors believe the outcomes of the present study can be used as a framework for choosing efficient drying parameters for drying cantaloupe or similar fruits in HAD systemsKeywords: Cantaloupe, Drying, antioxidant content, color, energy
-
In this study, a numerical analysis of different types of ceramic coating methods for a modified nanoparticle filtration system is investigated. The novelty of this study is based on proposing a nanofiltration model assisted by ceramic-based coating, leading to less energy consumption during the filtration process. The fluid velocity entering the nanofiltration system ranges from 20 to 75 m/s. Key parameters are identified and evaluated to assess the impact of energy losses on system performance. The results indicate that as the fluid velocity increases, both the pressure on the filter and the force on the system increase. The increase in shear stress on the wall also leads to an increase in the kinetic energy of the fluid, which can affect its turbulence. Three types of coatings, namely SiO2, Sic, and Si3N4, were examined. The use of SiO2 coating resulted in a 21% decrease in temperature compared to the case without coating, thus reducing energy losses. The optimal coating thicknesses were found to be 1 mm for SiO2, 1.2 mm for SiC, and 1.4 mm for Si3N4. The results show that using SiO2 coating can reduce energy losses by 19.34%. The pressure in the middle side of the filtration system is the highest due to the accumulation of nanoparticles, reaching a maximum value of 160 kPa. Conversely, the pressure in the corners of the filtration system is the lowest, with a value of 95.13 kPa.
Keywords: Nanoparticle, Nanofiltration, Coating, Ceramic-based, Energy -
افزایش تقاضای انرژی و کمبود آب تمیز در نتیجه شهرنشینی، رشد جمعیت و ایجاد اختلال در آب و هوا به چالشی جهانی تبدیل شده است. فناوری غشایی، می تواند نقش ویژه ای در تصفیه، شیرین سازی آب و تامین آب فرایندی مورد نیاز نیروگاه ها داشته باشد. فرایندهای غشایی دارای برتری های مشخصی از جمله کیفیت بالای آب با نگهداری آسان، پساب لجن شیمیایی کم، انتخاب پذیری و انتقال گزینشی اجزای مورد نظر، تطابق و قابلیت به کارگیری مناسب در فرایندهای یک پارچه، پایین بودن انرژی مصرفی، سازگاری با محیط زیست و کنترل پذیری مناسب هستند. هم چنین با به کارگیری این فناوری در باتری ها و پیل های سوختی و استفاده از جنس و ساختار غشایی مناسب قابلیت تولید انرژی الکتریکی پاک، پایدار و کارامد وجود خواهد داشت. منظور از انرژی پایدار، نوعی از انرژی است که می تواند به طور نامحدود و بدون تاثیرگذاری بر محیط زیست و نیز به پایان رسیدن منبع، مورد استفاده قرار گیرد. علاوه بر آن، استفاده از فرایندهای غشایی در تولید و خالص سازی سوخت های زیستی و جداسازی و بازیابی آلاینده های گازی از دیگر موارد مهم و مورد مطالعه صنعت آب و انرژی است.کلید واژگان: فرایندهای غشایی, تصفیه آب, انرژی, بیوراکتور, باتریIncreased energy demand and lack of clean water as a result of urbanization, population growth, and climate change have become global challenges. Membrane technology can play a special role in water purification, desalination and supplying process water required by power plants. Membrane processes have certain advantages, including high quality water with easy maintenance, low chemical sludge effluent, selectivity and selective transfer of desired components, appropriate adaptability and applicability in integrated processes, low energy consumption, environmental friendliness and good controllability. Also, using this technology in batteries and fuel cells and select the right material and membrane structure, there will be the ability to produce clean, sustainable and efficient electrical energy. Sustainable energy is a type of energy that can be used indefinitely without affecting the environment and the depletion of the resource. In addition, the use of membrane processes in the production and the purification of biofuels and the separation and recovery of gaseous pollutants are other important issues studied in water and energy industry.Keywords: Membrane processes, Water Treatment, Energy, Bioreactors, Batteries
-
In this experimental study, low velocity impact test with different energy levels was performed on a fiber-metal (FML) structure reinforced with NBR elastomer. The FML structure consisted of a 2024 layer of aluminium as the core, two layers of NBR elastomer on both sides of the aluminium and a composite layer after the NBR layers, which were made by hand layup method. The composite layers were made of bi-direction carbon fiber fabric as well as phenolic resin. Also, the knocker was made from very high hardness and hit the FML sample with various energy levels (50, 58 and 66 joules). Thus, in the present paper, the effect of different composite thicknesses on the front and back of the core against the three impact energies was studied. One of the notable innovations in this work is the use of NBR elastomer, which acts as a reinforcement in withstanding impact loads. Based on the obtained results, the maximum and minimum amount of contact force, absorbed energy, deformation and contact time was related to P ... 2.2 and P … 1.1 samples. By comparing the P … 2.1 and P… 1.2 samples after the impact test, it was shown that P… 2.1 samples has a softer behaviour.Keywords: FML, strike, Energy, Acrylonitrile Butadien, Rubber
-
مجله فرآیند نو، پیاپی 75 (پاییز 1400)، صص 71 -83
گاز طبیعی مایع شده توسط کاهش دمای گاز طبیعی تا دمای 160- درجه سلسیوس بهدست میآید، در این تحقیق با استفاده از نرمافزار ASPEN HYSYS، چرخه مایعسازی PRICO که شامل دو کمپرسور و یک مبدل حرارتی است، شبیهسازی شد. شبیهسازی در دو حالت فشار بالا (7945Kpa) و فشار پایین گاز طبیعی (2861Kpa) انجام شد. تابع هدف کمینه کردن مصرف ویژه انرژی فرایند است. در بهترین حالت مصرف انرژی 0/316Kwh/KgLNG بهدست آمد که در مقایسه با مقدار مرجع %22 کاهش را نشان میدهد. با تحلیل آنالیز حساسیت نتیجه گرفته شد که هر چه دبی مولی متان، اتان، پروپان و نیتروژن در ترکیب مبرد افزایش یابد مصرف ویژه انرژی هم افزایش مییابد. علاوه بر آن بهتر است درصد ایزوپنتان در مبرد بالا باشد تا بتوان به کمترین مصرف ویژه انرژی رسید. علاوه بر آن ضریب عملکرد هم مورد بررسی قرار گرفت که در فشار بالا به 3/12 رسید.
کلید واژگان: مایع سازی گاز طبیعی, انرژی, اکسرژی, شبیه سازی, PRICOLiquefied natural gas is obtained by reducing the temperature of natural gas to a temperature of -160, in this study, by using ASPEN HYSYS software, the PRICO liquefaction cycle, which includes two compressors and a heat exchanger, was simulated. The simulations were performed in two modes of high pressure (7945 Kpa) and low pressure of natural gas (2861 Kpa). The objective function was to minimize the specific energy consumption of the process. The energy consumption was 0.316 kWh / kgLNG, which showed a decrease of 22% compared to the reference value.
From Sensitivity analysis, it was concluded that the higher the molar flow rate of methane, ethane, propane and nitrogen in the refrigerant composition, the higher the specific energy consumption. In addition, it is better to have a high percentage of isopentane in the refrigerant to achieve the lowest specific energy consumption. In addition, the coefficient of performance was examined, which in the high pressure reached 3.12.Keywords: Natural gas liquefaction, energy, Exergy, Simulation, PRICO -
Natural gas is one of the most reliable and general energy sources globally, which their reservoirs always have high pressures. Nowadays, due to the production and supply of a variety of turbine expansions, it is possible to generate power from natural gas extraction. In this research, by considering the operational conditions and exploitation data, the possibility and advantage of using turbo-expander in gas extraction process are explored. Based on the results, 0.26-1.1 MW of power can be generated from each production well using the pressure drop in the turbo-expander with the flow ranges between 0.5-2.0 million STD_m3/d. The power generation capacity due to natural gas conditions may be associated with the production of gas condensates which has also been studied in this research.Keywords: Natural Gas, Power, Energy, Turbo-Expander, Condensates
-
استفاده از انرژی های پاک یکی از دغدغه های اجتناب ناپذیر جوامع امروزی است. سلول های خورشیدی با تبدیل نور خورشید به جریان الکتریسیته می توانند پاسخگوی بخش بزرگی از نیازهای انسان امروزی به انرژی برق در مصارف خانگی و صنعتی باشند. از این میان، سلول های خورشیدی پلیمری به دلیل داشتن بازده مناسب و روش ساخت آسان در سال های اخیر مورد توجه زیادی قرارگرفته اند. با وجود این، پژوهشگران در تلاش هستند، ضمن کاهش هزینه ساخت این نوع سلول های خورشیدی، بازده آن ها را نیز افزایش دهند. افزون بر کارایی زیاد سلول های خورشیدی پلیمری، پایداری آن ها نیز مسئله ای بسیار تعیین کننده در ساخت این نوع سامانه هاست. پیشرفت های سریع در زمینه سلول های فوتوولتایی از چند دهه پیش به مرحله ای رسیده است که میان دنیای پلیمر و استفاده از نور خورشید برای تولید انرژی، پیوند عمیق و ناگسستنی ایجاد کرده است. سلول های خورشیدی پایدار در کاربردهای مختلفی همچون تجهیزات ایستگاه های فضایی، ماشین های خورشیدی، حسگرها، چراغ های راهنمایی و ساعت های خانگی و مچی استفاده می شوند. سلول های خورشیدی پلیمری با داشتن حساسیت زیاد در برابر عوامل محیطی و پیکربندی متشکل از مواد تخریب پذیر و اکسیدشونده توجه زیادی را در بحث پایداری و عملکرد جلب کرده اند. در این مقاله، عوامل اثرگذار بر کاهش پایداری سلول های خورشیدی پلیمری نظیر شکل شناسی نیمه پایدار، اکسیژن، گرما و تنش مکانیکی بحث می شود. افزون بر این، راهکارهای افزایش پایداری نظیر دستکاری ساختار شیمیایی و شکل شناسی لایه فعال، هندسه وارون، بهینه سازی لایه های بافری، الکترودهای پایدار و تغییر ساختار مولکولی پلیمرها و سایر اجزا مرور شده و در هر بخش به اختصار کارهای شاخص انجام شده توضیح داده می شوند.
کلید واژگان: سلول خورشیدی پلیمری, انرژی, بازده, پایداری, شکل شناسیNowadays, the use of renewable energy resources has been considered as one of the imminent issues in human life. By converting solar energy into electricity, solar cells can meet most of the needs of communities for domestic and industrial use. Meanwhile, polymer solar cells have received much attention in recent years for their acceptable performance and easy manufacturing method. Nevertheless, researchers are trying to simultaneously decrease the cost of preparation and increase efficiency. In addition to the high efficacy of polymer solar cells, their stability in the manufacturing process is a challenge. For decades, rapid advances in photovoltaic cells have strongly linked the world of polymers and photovoltaic energies. Stable solar cells can be used in a variety of applications, such as space station equipment, solar vehicles, sensors, traffic lights, clocks and watches and more. Due to their high sensitivity to environmental factors, degradability and susceptibility to oxidation, polymer solar cells are very important in performance and stability. Polymer solar cells with high sensitivity to environmental factors and configuration containing of degradable and oxidizing materials have attached much attention in the discussion of stability and performance. In the present study, effective properties in reducing the stability of polymer solar cells, including semi-stable morphology, oxygen, heat, stress, etc., will be discussed. Moreover, outstanding methods for increasing stability such as architectural manipulation and morphology of the active layer, reverse configuration, optimization of buffer layers, stable electrodes, molecular restructuring of polymers and other components, etc. are reviewed and in each section, the principal researches are briefly discussed.
Keywords: polymer solar cell, energy, efficiency, Stability, morphology -
Evaluating the energy and environmental indicators allows for identifying the strengths and weaknesses of a system for optimizing material and energy consumption and developing strategies to reduce environmental impacts. This study determined and assessed the energy and environmental indicators of wheat flour production systems. The input and output materials and corresponding energy equivalents were calculated and then the energy indicators and forms. The environmental indicators were assessed by the life cycle assessment method in SimaPro software. The total input and output energies per year of flour production were 287935007 and 286675200 MJ, respectively. Wheat had the highest share (99.19%) of energy consumption in flour production; the energy ratio, productivity, intensity, and net energy gain indexes were equal to 1.02, 0.07 kg/MJ, 13.84, MJ/kg, and 0.31 MJ/kg, respectively. In the flour factory, the share of direct and indirect energy was 0.27 and 99.73%, respectively; the share of renewable and nonrenewable energy was 99.19 and 0.81%, respectively. Wheat input had the largest share of environmental indicators in flour production. The normalization step showed that the most important environmental indicator was marine water ecotoxicity (1.53×105 kg 1.4 DB eq/ton) followed by terrestrial ecotoxicity (36.59×105 kg 1.4 DB eq/ton), eutrophication (5.83kg PO4 eq/ton), and acidification potential (6.57kg SO2 eq/ton) indicator.Keywords: Wheat flour, energy, Environmental indicators, Life cycle assessment
-
فرآیندهای انبساطی نیتروژن، به دلیل سادگی و تجهیزات کم، برای واحدهای مایع سازی گاز طبیعی در مقیاس کوچک و بسیار کوچک (مینی) مناسب هستند. با این حال، مصرف بالای انرژی در این فرآیندها، هر تلاشی در زمینه کاهش مصرف انرژی و نیز ارتقاء کیفیت انرژی (ظرفیت کاردهی انرژی) را برای افزایش راندمان و سودآوری فرآیند، مطلوب می نماید. در این تحقیق، یک فرآیند مایع سازی گاز طبیعی از نوع انبساطی نیتروژن با دو توربین با نرم افزار اسپن هایسیس شبیه سازی گردیده و مورد تحلیل قرار گرفت. سپس به منظور بهینه سازی مصرف انرژی در فرآیند، برخی متغیرهای عملیاتی تاثیرگذار، با استفاده از الگوریتم ژنتیک و در محیط نرم افزار متلب تنظیم گردیدند. مصرف ویژه انرژی و مجموع نرخ تخریب اکسرژی که به ترتیب گویای کمیت و کیفیت مصرف انرژی در فرآیند می باشند، توابع هدف بهینه سازی هستند که در دو حالت جداگانه (حالت انرژی و حالت اکسرژی) بهینه می شوند. دبی مولی مبرد، دماها و فشارهای پایین و بالای مبرد در چرخه، مهمترین پارامترهای عملیاتی تاثیرگذار می باشند که با تحلیل حساسیت انتخاب شدند. نتایج نشان داد که در هر دو حالت بهینه سازی، مصرف ویژه 7/1 درصد کاهش یافت. اما مجموع نرخ تخریب اکسرژی در حالت اکسرژی، تا 9/55 درصد کاهش پیدا کرد. همچنین راندمان اکسرژی کل فرآیند در حالت اکسرژی تا 4/4 درصد بیشتر از حالت انرژی است که این امر نشان دهنده برتری انتخاب کیفیت مصرف انرژی به عنوان تابع هدف بهینه سازی است.Nitrogen expansion processes are suitable for mini or small-scale liquefied natural gas plants, due to their simplicity and less equipment. However, they consume a high amount of energy and any attempt to reduce the energy consumption and improve the quality of energy (work potential of energy), leads to enhance the process efficiency and profitability. A mini-scale nitrogen dual expander natural gas liquefaction process is simulated and analyzed by Aspen HYSYS simulator. Then, in order to optimize energy performance of the process, some influencing variables are adjusted using the genetic algorithm approach provided by MATLAB software in two separate optimization cases with different objective functions. Specific energy consumption and total exergy destruction are considered as the objective functions of the optimization cases (namely energy and exergy cases), which represent quantity and quality of energy, respectively. The most important operating variables of the process, refrigerant molar flow, refrigerant temperatures and refrigerant pressures, are selected via a sensitivity analysis. The results indicate that in both of the optimization cases, the specific power consumption of the process is reduced 7.1%. However, the total exergy destruction for exergy case decreases 9.55% which is slightly a more desirable result than the energy case. Also, total exergy efficiency of the process in exergy case is 4.4% higher than the other case which reveals that considering the quality aspect of energy as the objective can improve the performance of the process more appropriately.Keywords: Liquefied natural gas, Nitrogen expansion, Optimization, Energy, Exergy destruction, Efficiency
-
سه روش خشک کردن خورشیدی، آفتابی و سایه جهت کاهش رطوبت نعناع فلفلی از 87%~ تا 7%~ (بر مبنای تر) مطالعه گردید. در حالیکه افزایش دمای (∆T) هوای محیط در روش آفتابی در اثر جذب انرژی روزانه خورشید (با شدت 2m/W 957=Iave) به حدود oC4 رسید، این افزایش دما در روش خورشیدی پس از عبور هوا از میان جمع کننده انرژی (با سطح 2m 26/1) به oC18 رسید. با توجه به متوسط شدت تابش در روش خورشیدی (روزانه 2m/W 860~) میزان آنتالپی هوای گرم کن تا 40% افزایش یافت. مقدار مصرف انرژی برای خشک کردن از هر کیلوگرم نعناع فلفلی در خشک کن خورشیدی به kg/W 80~ رسید که با توجه به زمان کوتاه این روش (5 ساعت) فقط 16% از کل انرژی ورودی به محفظه خشک کن صرف افزایش گرمای محسوس و تبخیر آب از محصول گردید. اگزرژی ورودی و خروجی خشک کن خورشیدی برای خشک کردن از نعناع فلفلی به ترتیب 24% کاهش و 38% افزایش یافت و مقدار کل اتلاف حرارتی (برای اتصالات و بدنه دستگاه) در طی دوره خشک کردن خورشیدی کمتر از 4%~ از انرژی کل ورودی به خشک کن رسید. چون انرژی مصرفی برای خشک کردن از نعناع فلفلی با روش خورشیدی حدود 50% انرژی مصرفی در روش های آفتابی و سایه بوده امکان خشک کردن از نعناع فلفلی تازه و رسانیدن آن تا 7% رطوبت تادو برابر ظرفیت دراین روش فراهم گردید.کلید واژگان: نعناع فلفلی, خشک کن, اگزرژی, انرژی, دمای هواThree methods of solar drying (I), sun drying (II) and shade drying (III) used to reduce the moisture content of peppermint from 87 to 7% (wet basis). The increase of air-drying temperature (∆T) for peppermint dehydration in method II reached up to 4oC after absorbing of daily solar energy (Iave=957 W/m2). However, in the method I, this parameter (∆T) reached to 18oC after the ambient air passed through a double-pass heat collector (with only 1.26 m2 area). Although the enthalpy of drying air in the method I reached to 35 kJ/kg (40% more than the other methods because of the high heat intensity of solar collector Iave=840 W/m2), only ~16% of accumulated solar heat used to increase the peppermint temperature and evaporate its extra moisture. This is the reason that exergy in the inlet and outlet of the method I during drying peppermint reached to 24 and 38%, respectively. Furthermore, the drying capacity of peppermint in the method I was 100% more than the ones dried in methods II and III at the similar conditions. The total heat loss (because of connecting pipes and drying chamber) in the method I during peppermint drying was < 4% of the total heat collected in solar drier, which is negligible.Keywords: Peppermint, dryer, Exergy, energy, air drying temperature
-
The Gas to Gasoline (GTG) process includes conversion of natural, flare, and associated gas into synthetic fuels that can be compositionally upgraded and adjusted into different useful hydrocarbon fuels including gasoline, liquid petroleum gas (LPG), and fuel gas. Commonly, the GTG process involves three stages: 1) Synthesis gas (syngas) production unit 2) Methanol production unit 3) Methanol to Gasoline production unit (MTG). In this study, an integrated Flare Gas to Gasoline (FGTG) process for converting flare gas to gasoline, LPG and fuel gas is simulated using the Aspen HYSYS v. 8.8 simulator. The steam methane reforming (SMR) unit, the syngas to methanol unit, and the MTG unit are configured for simulation as an integrated FGTG process. In order to reduce carbon dioxide gas emissions to the atmosphere, a novel closed arrangement for the FGTG process (recycling configuration) is described and simulated. The simulation results demonstrate that by recycling all gas emissions, such as flare and off gas from the methanol and MTG units back into the process cycle, gasoline and LPG productivity can be increased on average by about 53% and 10%, respectively, compared to a base FGTG configuration that does not involve such recycling. The integrated simulation is supported by sensitivity analysis based on FGTG plants of various natural gas capacities (from 70,000 to 130,000 lb./hr.) as the adjustable (independent) variable and gasoline, LPG, and fuel gas selectivity as the dependent variables. Results of the simulation cases reveal that the total productivity of the integrated FGTG process could be increased in terms of flare gas mass flow, with the selectivity of products remaining approximately fixed for different plant capacities (i.e., at 75% for the gasoline product). Moreover, the utilities and energy consumption of the FGTG process is compared for several sensitivity cases. The results reveal that by increasing the capacity of the gas feed (natural gas mass flow) the Energy Index (i.e., total utilities consumption to product flow rate) decreased by about 8% and 47% in the base and recycling configurations, respectively. This finding suggests that an FGTG plant becomes more energy efficient at in higher-capacity plants.Keywords: Flare gas utilization, process simulation, membrane applications, energy index, flare gas to gasoline (FGTG), energy, emissions efficiency
-
Solid waste is one of the worlds important issues. Common methods for processing solid waste are landfill, incineration, anaerobic digestion, and pyrolysis. All these methods have some disadvantages and weaknesses. So, finding a new technology which is more powerful and reliable is necessary. The newest method is plasma gasification, which was done on a pilot scale for the first time in 1998. The temperatures up to 5000°C is achievable because of the existence of free electrodes inside the plasma arc. These temperatures are able the turn almost everything into syngas at oxygen starve environment. This process has 4 stages: waste pretreatment, plasma gasifier, gas cleaning system, energy recovery system which are described. Syngas is mostly made of H2, CO, CO2. Using two-stage plasma gasification technique, amplification of throughput, and syngas quality are achieved. This technology requires a considerable amount of initial investment, though it is known to be highly profitable economically.Keywords: Waste, Plasma, Gasification, Energy, Recycle, Reactor, Yield
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.